Advertisement

The Mie Theory pp 223-256 | Cite as

The Extension of Mie Theory to Multiple Spheres

  • Daniel MackowskiEmail author
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 169)

Abstract

A generalized mathematical formulation is presented for the scattering and absorption of electromagnetic time harmonic waves by multiple spherical particles. A central element of this formulation is the addition theorem for vector wave functions, which allows a scattered field from one sphere to be represented as an exciting field about another sphere. A simplified derivation of the addition theorem, and important characteristics of where it can and can not be used, are developed. The Mie solution, coupled with the addition theorem, results in a system of linear interaction equations for the multipole coefficients that describe the scattered field from each sphere in the system. In this regard, the multiple sphere formulation results in an implicit, rather than explicit, solution for the scattered field; numerical methods (i.e., linear equation solvers) must be applied to obtain numerical results. The calculation of the \(T\) matrix of the multiple sphere system, from which orientation averaged scattering and absorption properties can be obtained, is described. The presentation ends with a discussion on the application of the multiple sphere formulation to describing the propagation of electromagnetic waves in discretely inhomogeneous media.

Keywords

Absorption Cross Section Scattered Field Incident Field Addition Theorem Interaction Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Gouesbet, B. Maheu, G. Grehan, J. Opt. Soc. Am. A 5, 1427 (1988)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    A. Doicu, T. Wriedt, Appl. Opt. 13, 2971 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    S. Stein, Quart. Appl. Math. 19, 15 (1961)MathSciNetzbMATHGoogle Scholar
  4. 4.
    O. Cruzan, Quart. Appl. Math. 20, 33 (1962)MathSciNetzbMATHGoogle Scholar
  5. 5.
    C. Liang, Y. Lo, Radio Sci. 2, 1481 (1967)ADSGoogle Scholar
  6. 6.
    J.H. Brunning, Y.T. Lo, IEEE Trans. Antennas Propag. AP-19, 378 (1971)Google Scholar
  7. 7.
    F. Borghese, P. Denti, G. Toscano, O. Sindoni, Appl. Opt. 18, 116 (1979)ADSCrossRefGoogle Scholar
  8. 8.
    F. Borghese, P. Denti, R. Saija, G. Toscano, O. Sindoni, J. Opt. Soc. Am. A 1, 183 (1984)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    K. Fuller, G. Kattawar, Opt. Lett. 13, 90 (1988)ADSCrossRefGoogle Scholar
  10. 10.
    K. Fuller, G. Kattawar, Opt. Lett. 13, 1063 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    D.W. Mackowski, Proc. Roy. Soc. Lond. A 433, 599 (1991)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    D.W. Mackowski, J. Opt. Soc. Am. A 11, 2851 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    D.W. Mackowski, M.I. Mishchenko, J. Opt. Soc. Am. A 13, 2266 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    K.A. Fuller, D.W. Mackowski, in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, ed. by M.I. Mishchenko, J.W. Hovenier, L.D. Travis, chap. 8, (Academic Press, New York, 2000), p. 226Google Scholar
  15. 15.
    F. Borghese, P. Denti, R. Saija, Scattering from Model Nonspherical Particles (Springer, Berlin, 2007)Google Scholar
  16. 16.
    M.I. Mishchenko, G. Videen, V.A. Babenko, N.G. Khlebtsov, T. Wriedt, J. Quant. Spectrosc. Radiat. Transf. 88(1–3), 357 (2004)Google Scholar
  17. 17.
    M.I. Mishchenko, G. Videen, V.A. Babenko, N.G. Khlebtsov, T. Wriedt, J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 304 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    D.W. Mackowski, ASME Conf. Proc. 2006(47845), 205 (2006)Google Scholar
  19. 19.
    M. Mishchenko, L. Liu, D.W. Mackowski, B. Cairns, G. Videen, Opt. Express 15, 2822 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    P. Flatau, Opt. Express 12, 3149 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    K.A. Fuller, Appl. Opt. 30(33), 4716 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Xu, Appl. Opt. 36, 9496 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, New York, 1983)Google Scholar
  24. 24.
    A. Narayanaswamy, G. Chen, Phys. Rev. B 77(7), 075125 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    D.W. Mackowski, M. Mishchenko, J. Heat Transf. 130(11), 112702 (2008)CrossRefGoogle Scholar
  26. 26.
    A. Ishimaru, Wave Propagation and Scattering in Random Media. vols. I and 2 (Academic Press, New York, 1978)Google Scholar
  27. 27.
    V.K. Varadan, V.N. Bringi, V.V. Varadan, A. Ishimaru, Radio Sci. 18, 321 (1983)ADSCrossRefGoogle Scholar
  28. 28.
    P.C. Waterman, N.E. Pedersen, J. Appl. Phys. 59, 2609 (1986)ADSCrossRefGoogle Scholar
  29. 29.
    L.L. Foldy, Phys. Rev. 67(3–4), 107 (1945)MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 30.
    M. Lax, Phys. Rev. 85(4), 621 (1952)ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    A. Doicu, T. Wriedt, Y.A. Eremin, Light Scattering by Systems of Particles. Null-Field Method with Discrete Sources: Theory and Programs, (Springer Science+Business Media, New York, 2006)Google Scholar
  32. 32.
    B.T. Draine, P.J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    M.A. Yurkin, A.G. Hoekstra, J. Quant. Spectrosc. Radiat. Transf. 106, 558 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    D.W. Mackowski, J. Opt. Soc. Am. A 19, 881 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    H. Cao, J.Y. Xu, D.Z. Zhang, S.H. Chang, S.T. Ho, E.W. Seelig, X. Liu, R.P.H. Chang, Phys. Rev. Lett. 84(24), 5584 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    A. Yamilov, H. Cao, Phys. Rev. B 68, 085111 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentAuburn UniversityAuburnUSA

Personalised recommendations