The Mie Theory pp 193-222 | Cite as

Rainbows, Coronas and Glories

  • Philip LavenEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 169)


Rainbows, coronas and glories are examples of atmospheric optical phenomena caused by the scattering of sunlight from spherical drops of water. It is surprising that the apparently simple process of scattering of light by spherical drops of water can result in this wide range of colourful effects. However, the scattering mechanisms are very complicated. Eminent scientists (such as Descartes, Newton, Young, Airy and many others) offered various explanations for the formation of rainbows—thus making major contributions to our understanding of the nature of light. The basic features of rainbows can be explained by geometrical optics but, in the early 1800s, supernumerary arcs on rainbows provided crucial supporting evidence for the wave theory of light. In 1908, Mie provided a rigorous (but very complicated) solution to the problem of scattering of light by spherical particles. More than 100 years later, Mie’s solution can now be used to produce excellent full-colour simulations. Examples of such simulations show how the appearance of these phenomena vary with the size of the water drops, as well as describing the scattering mechanisms that are responsible for their formation.


Surface Wave Water Drop Geometrical Optic Parallel Polarisation Spherical Drop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J.A. Adam, The mathematical physics of rainbows and glories. Phys. Rep. 356, 229–365 (2002)ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    J.A. Adam, Geometric optics and rainbows: generalization of a result by Huygens. Appl. Opt. 47, H11–H13 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    G.B. Airy, On the intensity of light in the neighbourhood of a caustic. Trans. Camb. Philos. Soc. 6, 397–403 (1838)Google Scholar
  4. 4.
    H. Bech, A. Leder, Particle sizing by ultrashort laser pulses–numerical simulation. Optik 115, 205–217 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    H. Bech, A. Leder, Particle sizing by time-resolved Mie calculations—A numerical study. Optik 117, 40–47 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)Google Scholar
  7. 7.
    C.B. Boyer, The Rainbow: From Myth to Mathematics. (Princeton University, Princeton, 1987), reprint of 1959 Thomas Yoseloff ednGoogle Scholar
  8. 8.
    H.C. Bryant, A.J. Cox, Mie theory and the glory. J. Opt. Soc. Am. 56, 1529–1532 (1966)ADSCrossRefGoogle Scholar
  9. 9.
    H.C. Bryant, N. Jarmie, The glory. Sci. Am. 231, 60–71 (1974)ADSCrossRefGoogle Scholar
  10. 10.
    L. Cowley, P. Laven, M. Vollmer, Rings around the sun and moon: coronae and diffraction. Phys. Educ. 41, 51–59 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Iris software (Cited 31 October 2009)
  12. 12.
    J.V. Dave, Scattering of visible light by large water spheres. Appl. Opt. 8, 155–164 (1969)ADSCrossRefGoogle Scholar
  13. 13.
    P. Debye, Das elektromagnetische Feld um einen Zylinder und die Theorie des Regenbogens. Physikalische Zeitschrift 9, 775–778 (1908) [N.B. An English translation of this paper entitled The electromagnetic field around a cylinder and the theory of the rainbow is available in Selected Papers on Geometrical Aspects of Scattering, SPIE Milestone Series Volume MS 89 (1993)]Google Scholar
  14. 14.
    T.S. Fahlen, H.C. Bryant, Direct observation of surface waves on droplets. J. Opt. Soc. Am. 56, 1635–1636 (1966)CrossRefGoogle Scholar
  15. 15.
    S.D. Gedzelman, Simulating glories and cloudbows in color. Appl. Opt. 42, 429–435 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    S.D. Gedzelman, Simulating rainbows in their atmospheric environment. Appl. Opt. 47, H176–H181 (2008)CrossRefGoogle Scholar
  17. 17.
    S.D. Gedzelman, Simulating halos and coronas in their atmospheric environment. Appl. Opt. 47, H157–H166 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    S.D. Gedzelman, J.A. Lock, Simulating Coronas in Color. Appl. Opt. 42, 497–504 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    G. Gouesbet, B. Maheu, G. Grehan, Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formalism. J. Opt. Soc. Am. A 5, 1427–1443 (1988)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    W.T. Grandy, Scattering of Waves from Large Spheres (Cambridge University, Cambridge, 2001)Google Scholar
  21. 21.
    R. Greenler, Rainbows (Halos and Glories. Cambridge University, Cambridge, 1980)Google Scholar
  22. 22.
    R.B. Hoover, F.S. Harris, Die Beugungserscheinungen: a Tribute to F. M. Schwerd’s Monumental Work on Fraunhofer Diffraction. Appl. Opt. 8, 2161–2164 (1969)ADSCrossRefGoogle Scholar
  23. 23.
    E.A. Hovenac, J.A. Lock, Assessing the contributions of surface waves and complex rays to far-field Mie scattering by use of the Debye series. J. Opt. Soc. Am. A 9, 781–795 (1992)ADSCrossRefGoogle Scholar
  24. 24.
    H. Inada, New calculation of surface wave contributions associated with Mie backscattering. Appl. Opt. 12, 1516–1523 (1973)ADSCrossRefGoogle Scholar
  25. 25.
    V. Khare, Short-wavelength scattering of electromagnetic waves by a homogeneous dielectric sphere. Ph.D. thesis (University of Rochester, Rochester, 1976). This reference may not be readily available, but the calculation method is summarized in 23 Google Scholar
  26. 26.
    V. Khare, H.M. Nussenzveig, Theory of the glory. Phys. Rev. Lett. 38, 1279–1282 (1977)ADSCrossRefGoogle Scholar
  27. 27.
    G.P. Können, J.H. de Boer, Polarized rainbow. Appl. Opt. 18, 1961–1965 (1979)ADSCrossRefGoogle Scholar
  28. 28.
    G.P. Können, Polarized light in nature (Cambridge University Press, Cambridge, 1985)Google Scholar
  29. 29.
    P. Laven, Simulation of rainbows, coronas, and glories by use of Mie theory. Appl. Opt. 42, 436–444 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    P. Laven, Simulation of rainbows, coronas and glories using Mie theory and the Debye series. J. Quant. Spectrosc. Radiat. Transf. 89, 257–269 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    P. Laven, How are glories formed? Appl. Opt. 44, 5675–5683 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    P. Laven, Atmospheric glories: simulations and observations. Appl. Opt. 44, 5667–5674 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    P. Laven, Noncircular glories and their relationship to cloud droplet size. Appl. Opt. 47, H25–H30 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    P. Laven, Effects of refractive index on glories. Appl. Opt. 47, H133–H142 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    MiePlot software, (Cited 31 October 2009)
  36. 36.
    R.L. Lee, Mie theory, Airy theory, and the natural rainbow. Appl. Opt. 37, 1506–1519 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    R.L. Lee, A.B. Fraser, The Rainbow Bridge: Rainbows in Art, Myth and Science (Pennsylvania State University Press, Pennsylvania, 2001)Google Scholar
  38. 38.
    J.A. Lock, L. Yang, Mie theory model of the corona. Appl. Opt. 30, 3408–3414 (1991)ADSCrossRefGoogle Scholar
  39. 39.
    J.A. Lock, Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle. J. Opt. Soc. Am. A 10, 693–706 (1993)ADSCrossRefGoogle Scholar
  40. 40.
    J.A. Lock, Improved Gaussian beam-scattering algorithm. Appl. Opt. 34, 559–570 (1995)ADSCrossRefGoogle Scholar
  41. 41.
    J.A. Lock, Role of the tunneling ray in near-critical-angle scattering by a dielectric sphere. J. Opt. Soc. Am. A 20, 499–507 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    J.A. Lock, G. Gouesbet, Generalized Lorenz—Mie theory and applications. J. Quant. Spectrosc. Radiat. Transf. 110, 800–807 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    D.K. Lynch, W. Livingston, Color and Light in Nature (Cambridge University, Cambridge, 2001)Google Scholar
  44. 44.
    L. Méès, G. Gouesbet, G. Gréhan, Time-resolved scattering diagrams for a sphere illuminated by plane wave and focused short pulses. Opt. Commun. 194, 59–65 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    L. Méès, G. Gouesbet, G. Gréhan, Scattering of Laser Pulses (Plane Wave and Focused Gaussian Beam) by Spheres. Appl. Opt. 40, 2546–2550 (2001)ADSCrossRefGoogle Scholar
  46. 46.
    G. Mie, Beitrage zur Optik trüber Medien, speziell kolloidaler Metallosungen. Ann. Phys. Leipzig 25, 377–445 (1908)ADSzbMATHCrossRefGoogle Scholar
  47. 47.
    M. Minnaert, The Nature of Light and Colour in the Open Air (Dover Publications, New York, 1954)Google Scholar
  48. 48.
    H.M. Nussenzveig, High-frequency scattering by a transparent sphere. I. Direct reflection and transmission. J. Math. Phys. 10, 82–124 (1969)MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    H.M. Nussenzveig, High-frequency scattering by a transparent sphere. II. Theory of the rainbow and the glory. J. Math. Phys. 10, 125–176 (1969)MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    H.M. Nussenzveig, Complex angular momentum theory of the rainbow and the glory. J. Opt. Soc. Am. 69, 1068–1079 (1979)MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    H.M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge University, Cambridge, 1992)CrossRefGoogle Scholar
  52. 52.
    H.M. Nussenzveig, Does the glory have a simple explanation? Opt. Lett. 27, 1379–1381 (2002)ADSCrossRefGoogle Scholar
  53. 53.
    H.M. Nussenzveig, Light tunneling in clouds. Appl. Opt. 42, 1588–1593 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    J.A. Shaw, P.J. Neiman, Coronas and iridescence in mountain wave clouds. Appl. Opt. 42, 476–485 (2003)ADSCrossRefGoogle Scholar
  55. 55.
    R.A.R. Tricker, Introduction to Meteorological Optics (American-Elsevier, New York, 1970)Google Scholar
  56. 56.
    H.C. van de Hulst, A theory of the anti-coronae. J. Opt. Soc. Am. 37, 16–22 (1947)ADSCrossRefGoogle Scholar
  57. 57.
    H.C. van de Hulst, Light Scattering by Small Particles ( Dover, New York, 1981), reprint of 1957 Wiley editionGoogle Scholar
  58. 58.
    M. Vollmer, Effects of absorbing particles on coronas and glories. Appl. Opt. 44, 5658–5666 (2005)ADSCrossRefGoogle Scholar
  59. 59.
    M. Vollmer, Lichtspiele in der Luft (Elsevier, München, 2006)Google Scholar
  60. 60.
    R.T. Wang, H.C. van de Hulst, Rainbows: Mie computations and the Airy approximation. Appl. Opt. 30, 106–117 (1991)ADSCrossRefGoogle Scholar
  61. 61.
    T. Young, Experiments and calculations relative to physical optics. A Bakerian Lecture read on November 24, 1803. Phil. Trans. Roy. Soc. 1–16 (1804)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.HorleyUK

Personalised recommendations