The Mie Theory pp 101-133 | Cite as

Predicting the Appearance of Materials Using Lorenz–Mie Theory

  • Jeppe Revall FrisvadEmail author
  • Niels Jørgen Christensen
  • Henrik Wann Jensen
Part of the Springer Series in Optical Sciences book series (SSOS, volume 169)


Computer graphics systems today are able to produce highly realistic images. The realism has reached a level where an observer has difficulties telling whether an image is real or synthetic. The exception is when we try to compute a picture of a scene that really exists and compare the result to a photograph of the real scene. In this direct comparison, an observer quickly identifies the synthetic image. One of the problems is to model all the small geometrical details correctly. This is a problem that we will not consider. But even if we pick a simple experimental set up, where the objects in the scene have few geometrical details, a graphics system will still have a hard time predicting the result of taking a picture with a digital camera. The problem here is to model the optical properties of the materials correctly. In this chapter, we show how Lorenz–Mie theory enables us to compute the optical properties of turbid materials such that we can predict their appearance. To describe the entire process of predicting the appearance of a material, we include a description of the mathematical models used in realistic image synthesis.


Phase Function Optical Thickness Scatter Cross Section Appearance Model Casein Micelle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.A. Hall, D.P. Greenberg, IEEE Comput. Graph. Appl. 3(8), 10 (1983)CrossRefGoogle Scholar
  2. 2.
    A.S. Glassner, Principles of Digital Image Synthesis (Morgan Kaufmann Publishers, Inc., San Francisco, California, 1995). Two-volume setGoogle Scholar
  3. 3.
    S. Chandrasekhar, Radiative Transfer (Oxford, Clarendon Press, 1950). Unabridged and slightly revised version published by Dover Publications, Inc., in 1960Google Scholar
  4. 4.
    R. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, 4th edn. (Taylor& Francis, New York, 2002)Google Scholar
  5. 5.
    M. Pharr, G. Humphreys, Physically Based Rendering: From Theory to Implementation (Morgan Kaufmann Publishers, an imprint of Elsevier Inc., 2004)Google Scholar
  6. 6.
    B.T. Phong, Commun. ACM 18(6), 311 (1975)CrossRefGoogle Scholar
  7. 7.
    R.V. Klassen, ACM Trans. Graph. 6(3), 215 (1987)CrossRefGoogle Scholar
  8. 8.
    D. Jackèl, B. Walter, Comput. Graph. Forum 16(4), 201 (1997)CrossRefGoogle Scholar
  9. 9.
    A.J. Preetham, P. Shirley, B. Smits, in Proceedings of ACM SIGGRAPH 1999 (ACM Press, 1999), pp. 91–100Google Scholar
  10. 10.
    L.V. Wang, H.I. Wu, Biomedical Optics: Principles and Imaging (John Wiley& Sons, Inc., Hoboken, New Jersey, 2007)Google Scholar
  11. 11.
    A. Sommerfeld, J. Runge, Annalen der Physik 340, 277 (1911)ADSCrossRefGoogle Scholar
  12. 12.
    P.d. Fermat, OEuvres de Fermat: Correspondance, Vol. 2 (Gauthier-Villars et fils, Paris, 1894)Google Scholar
  13. 13.
    A. Glassner, IEEE Comput. Graph. Appl. 4(10), 15 (1984)Google Scholar
  14. 14.
    F.W. Jansen, in Data Structures for Raster Graphics: Proceedings of a Workshop Held at Steensel, the Netherlands, from 24–28 June 1985. Eurographics seminars, (Springer, 1986), pp. 57–73Google Scholar
  15. 15.
    A. Fujimoto, T. Tanaka, K. Iwata, IEEE Comput. Graph. Appl. 6(4), 16 (1986)CrossRefGoogle Scholar
  16. 16.
    K. Sung, P. Shirley, in Graphics Gems III, ed. by D. Kirk (Academic Press, 1992), pp. 271–274Google Scholar
  17. 17.
    T. Möller, B. Trumbore, J. Graph. Tools 2(1), 21 (1997)CrossRefGoogle Scholar
  18. 18.
    A. Fresnel, Mémoires de l’Académie des sciences de l’Institut de France 11, 393 (1832). Presented 7 January 1823Google Scholar
  19. 19.
    T. Whitted, Commun. ACM 23(6), 343 (1980). Presented at SIGGRAPH 79Google Scholar
  20. 20.
    R.W. Preisendorfer, Radiative Transfer on Discrete Spaces (Pergamon Press, 1965)Google Scholar
  21. 21.
    A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, New York, 1978). Reissued by IEEE Press and Oxford University Press 1997Google Scholar
  22. 22.
    J.T. Kajiya, B.P. Von Herzen, Computer graphics (Proc. ACM SIGGRAPH 84) 18(3), 165 (1984)Google Scholar
  23. 23.
    S.N. Pattanaik, S.P. Mudur, J. Vis. Comput. Animat. 4(3), 133 (1993)CrossRefGoogle Scholar
  24. 24.
    T. Nishita, Y. Miyawaki, E. Nakamae, Computer graphics (Proc. ACM SIGGRAPH 87) 21(4), 303 (1987)Google Scholar
  25. 25.
    H. Rushmeier, in Realistic Input for Realistic Images. ACM Press (ACM SIGGRAPH 95 Course Notes, 1995). Also appeared in the ACM SIGGRAPH 98 Course Notes—A Basic Guide to Global IlluminationGoogle Scholar
  26. 26.
    P. Callet, Comput. Graph. Forum 15(2), 119 (1996)CrossRefGoogle Scholar
  27. 27.
    T. Nishita, Y. Dobashi, in Proceedings of Computer Graphics International 2001 (IEEE Computer Society, 2001), pp. 149–156Google Scholar
  28. 28.
    J.R. Frisvad, N.J. Christensen, H.W. Jensen, ACM Trans. Graph. 26(3) (2007). Article 60Google Scholar
  29. 29.
    L.G. Henyey, J.L. Greenstein, Annales d’Astrophysique, 3, 117, (1940) Also in. Astrophys. J. 93, (1941)Google Scholar
  30. 30.
    C.F. Bohren, D.P. Gilra, J. Colloid Interface Sci. 72(2), 215 (1979)CrossRefGoogle Scholar
  31. 31.
    H.C. van de Hulst, Light Scattering by Small Particles (John Wiley& Sons, Inc., New York, 1957), Unabridged and corrected version of the work published by Dover Publications, Inc., in 1981Google Scholar
  32. 32.
    L. Lorenz, Det kongelig danske Videnskabernes Selskabs Skrifter 6(1), 2–62 (6. Række, naturvidenskabelig og mathematisk Afdeling, 1890) pp 2–62Google Scholar
  33. 33.
    G. Mie, Annalen der Physik 25(3), 377 (1908). IV. FolgeGoogle Scholar
  34. 34.
    M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969)Google Scholar
  35. 35.
    J.V. Dave, IBM J. Res. Dev. 13(3), 302 (1969)ADSCrossRefGoogle Scholar
  36. 36.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley& Sons, Inc., 1983)Google Scholar
  37. 37.
    G.W. Kattawar, G.N. Plass, Appl. Opt. 6(8), 1377 (1967)ADSCrossRefGoogle Scholar
  38. 38.
    W.J. Wiscombe, Appl. Opt. 19(9), 1505 (1980)ADSCrossRefGoogle Scholar
  39. 39.
    W.C. Mundy, J.A. Roux, A.M. Smith, J. Opt. Soc. Am. 64(12), 1593 (1974)ADSCrossRefGoogle Scholar
  40. 40.
    V.E. Cachorro, L.L. Salcedo, J. Electromagn. Waves Appl. 5(9), 913 (1991)CrossRefGoogle Scholar
  41. 41.
    D.W. Mackowski, R.A. Altenkirch, M.P. Menguc, Appl. Opt. 29(10), 1551 (1990)ADSCrossRefGoogle Scholar
  42. 42.
    Z.S. Wu, Y.P. Wang, Radio Sci. 26(6), 1393 (1991)ADSCrossRefGoogle Scholar
  43. 43.
    W. Yang, Appl. Opt. 42(9), 1710 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    H.C. van de Hulst, Physica 15(8–9), 740 (1949)ADSzbMATHCrossRefGoogle Scholar
  45. 45.
    J. Randrianalisoa, D. Baillis, L. Pilon, J. Opt. Soc. Am. A 23(7), 1645 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    J. Yin, L. Pilon, J. Opt. Soc. Am. A 23(11), 2784 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    Q. Fu, W. Sun, J. Quant. Spectr. Radiat. Transf. 100(1–3), 137 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    T.C. Grenfell, S.G. Warren, J. Geophys. Res. 104(D24), 31697 (1999)Google Scholar
  49. 49.
    S.P. Neshyba, T.C. Grenfell, S.G. Warren, J. Geophys. Res. 108(D15, 4448), 6 (2003)Google Scholar
  50. 50.
    T.C. Grenfell, S.P. Neshyba, S.G. Warren, J. Geophys. Res. 110(D17203), 1 (2005)Google Scholar
  51. 51.
    J.R. Frisvad, Light, Matter, and Geometry: The Cornerstones of Appearance Modelling (VDM Verlag Dr. Müller, 2008)Google Scholar
  52. 52.
    J.A. Lock, G. Gouesbet, J. Quant. Spectr. Radiat. Transf. 110(11), 800 (2009). ReviewGoogle Scholar
  53. 53.
    G. Gouesbet, J. Quant. Spectr. Radiat. Transf. 110(14–16), 1223 (2009). ReviewGoogle Scholar
  54. 54.
    E.P. Lafortune, Y.D. Willems, in Proceedings of the 7th Eurographics Workshop on Rendering (1996), pp. 91–100Google Scholar
  55. 55.
    H.D. Goff, A.R. Hill, in Dairy Science and Technology Handbook: Principles and Properties, vol. 1, ed. by Y.H. Hui (VCH Publishers, Inc., New York, 1993), Chap. 1, pp. 1–81Google Scholar
  56. 56.
    P.F. Fox, P.L.H. McSweeney, Dairy Chemistry and Biochemistry (Blackie Academic& Professional, London, 1998)Google Scholar
  57. 57.
    X. Quan, E.S. Fry, Appl. Opt. 34(18), 3477 (1995)ADSCrossRefGoogle Scholar
  58. 58.
    P.D.T. Huibers, Appl. Opt. 36(16), 3785 (1997)ADSCrossRefGoogle Scholar
  59. 59.
    H. Du, R.C.A. Fuh, J. Li, L.A. Corkan, J.S. Lindsey, Photochem. Photobiol. 68(2), 141 (1998)Google Scholar
  60. 60.
    J. Koziol, Photochem. Photobiol. 5, 41 (1966)CrossRefGoogle Scholar
  61. 61.
    G.M. Hale, M.R. Querry, Appl. Opt. 12(3), 555 (1973)ADSCrossRefGoogle Scholar
  62. 62.
    M.C. Michalski, V. Briard, F. Michel, Lait 81, 787 (2001)CrossRefGoogle Scholar
  63. 63.
    P. Walstra, R. Jenness, Dairy Chemistry and Physics (John Wiley& Sons, New York, 1984)Google Scholar
  64. 64.
    P. Walstra, Neth. Milk Dairy J. 29, 279 (1975)Google Scholar
  65. 65.
    D.W. Olson, C.H. White, R.L. Richter, J. Dairy Sci. 87(10), 3217 (2004)CrossRefGoogle Scholar
  66. 66.
    R. Attaie, R.L. Richtert, J. Dairy Sci. 83, 940 (2000)CrossRefGoogle Scholar
  67. 67.
    R. Gebhardt, W. Doster, J. Friedrich, U. Kulozik, Eur. Biophys. J. 35, 503 (2006)CrossRefGoogle Scholar
  68. 68.
    D.G. Schmidt, P. Walstra, W. Buchheim, Neth. Milk Dairy J. 27, 128 (1973)Google Scholar
  69. 69.
    A. Stockman, L.T. Sharpe, Vis. Res. 40(13), 1711 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jeppe Revall Frisvad
    • 1
    Email author
  • Niels Jørgen Christensen
    • 1
  • Henrik Wann Jensen
    • 2
  1. 1.Technical University of DenmarkKongens LyngbyDenmark
  2. 2.University of CaliforniaSan DiegoCalifornia

Personalised recommendations