Skip to main content

Controlling the Motion of Electronic Wavepackets Using Cycle-Sculpted Two-Color Laser Fields

  • Chapter
  • First Online:
Progress in Ultrafast Intense Laser Science VIII

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 103))

Abstract

We use cycle-sculpted two-color waveforms to drive electronic wavepackets generated by strong-field ionization from helium, neon, and argon gas atoms and analyze their momentum spectra measured by electron-ion coincidence momentum spectroscopy. Varying the relative phase of the two colors allows to sculpt the ionizing field and hence to control the emission times and motion of the wavepackets on an attosecond timescale. Using semiclassical calculations, we investigate the influence of the ionic Coulomb field onto the motion of emitted electronic wavepackets. We further show that the measured electron momentum spectra contain interference patterns created by pairs of electron wavepackets that are released within a single laser-field cycle. We experimentally distinguish these subcycle interference structures from above-threshold ionization (ATI) peaks and argue that they can be used to extract the subcycle phase evolution of the laser-driven complex bound-state wavefunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.B. Corkum, F. Krausz, Nat. Phys. 3(6), 381 (2007). DOI 10.1038/nphys620. http://www.nature.com/doifinder/10.1038/nphys620

  2. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81(1), 163 (2009). DOI 10.1103/RevModPhys.81.163. URL http://link.aps.org/doi/10.1103/RevModPhys.81.163

    Google Scholar 

  3. P. Corkum, Phys. Rev. Lett. 71(13), 1994 (1993). DOI 10.1103/PhysRevLett.71.1994. URL http://link.aps.org/doi/10.1103/PhysRevLett.71.1994

  4. M. Kitzler, M. Lezius, Phys. Rev. Lett. 95(25), 253001 (2005). DOI 10.1103/PhysRevLett.95.253001. URL http://link.aps.org/doi/10.1103/PhysRevLett.95.253001

    Google Scholar 

  5. M. Kitzler, X. Xie, A. Scrinzi, A. Baltuska, Phys. Rev. A 76(1), 011801 (2007). DOI 10.1103/PhysRevA.76.011801. URL http://link.aps.org/doi/10.1103/PhysRevA.76.011801

    Google Scholar 

  6. M. Spanner, O. Smirnova, P.B. Corkum, M.Y. Ivanov, J. Phys. B Atom. Mol. Opt. Phys. 37(12), L243 (2004). DOI 10.1088/0953-4075/37/12/L02. URL http://stacks.iop.org/0953-4075/37/i=12/a=L02?key=crossref.d453c23ea94b6703d9e16eeda244ce36

  7. F. Lindner, M. Schätzel, H. Walther, A. Baltuška, E. Goulielmakis, F. Krausz, D. Milošević, D. Bauer, W. Becker, G. Paulus, Phys. Rev. Lett. 95(4), 040401 (2005). DOI 10.1103/PhysRevLett.95.040401. URL http://link.aps.org/doi/10.1103/PhysRevLett.95.040401

  8. S. Yurchenko, S. Patchkovskii, I. Litvinyuk, P. Corkum, G. Yudin, Phys. Rev. Lett. 93(22), 223003 (2004). DOI 10.1103/PhysRevLett.93.223003. URL http://link.aps.org/doi/10.1103/PhysRevLett.93.223003

    Google Scholar 

  9. M. Meckel, D. Comtois, D. Zeidler, A. Staudte, D. Pavicic, H.C. Bandulet, H. Pépin, J.C. Kieffer, R. Dörner, D.M. Villeneuve, P.B. Corkum, Science (New York, N.Y.) 320(5882), 1478 (2008). DOI 10.1126/science.1157980. URL http://www.ncbi.nlm.nih.gov/pubmed/18556555

    Google Scholar 

  10. Y. Huismans, A. Rouzée, A. Gijsbertsen, J.H. Jungmann, A.S. Smolkowska, P.S.W.M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J.M. Bakker, G. Berden, B. Redlich, A.F.G. van der Meer, H.G. Muller, W. Vermin, K.J. Schafer, M. Spanner, M.Y. Ivanov, O. Smirnova, D. Bauer, S.V. Popruzhenko, M.J.J. Vrakking, Science (New York, N.Y.) 331, 61 (2010). DOI 10.1126/science.1198450. URL http://www.ncbi.nlm.nih.gov/pubmed/21163963

  11. S. Baker, J.S. Robinson, C.A. Haworth, H. Teng, R.A. Smith, C.C. Chirila, M. Lein, J.W.G. Tisch, J.P. Marangos, Science 312(5772), 424 (2006). DOI 10.1126/science.1123904. URL http://www.ncbi.nlm.nih.gov/pubmed/16513942

  12. O. Smirnova, Y. Mairesse, S. Patchkovskii, N. Dudovich, D. Villeneuve, P. Corkum, M.Y. Ivanov, Nature 460(7258), 972 (2009). DOI 10.1038/nature08253. URL http://www.ncbi.nlm.nih.gov/pubmed/19626004

  13. S. Haessler, J. Caillat, W. Boutu, C. Giovanetti-Teixeira, T. Ruchon, T. Auguste, Z. Diveki, P. Breger, A. Maquet, B. Carré, R. Taïeb, P. Salières, Nat. Phys. 6(3), 200 (2010). DOI 10.1038/nphys1511. URL http://www.nature.com/doifinder/10.1038/nphys1511

  14. H.J. Wörner, J.B. Bertrand, D.V. Kartashov, P.B. Corkum, D.M. Villeneuve, Nature 466(7306), 604 (2010). DOI 10.1038/nature09185. URL http://www.nature.com/doifinder/10.1038/nature09185

  15. Y. Mairesse, J. Higuet, N. Dudovich, D. Shafir, B. Fabre, E. Mével, E. Constant, S. Patchkovskii, Z. Walters, M.Y. Ivanov, O. Smirnova, Phys. Rev. Lett. 104(21), 213601 (2010). DOI 10.1103/PhysRevLett.104.213601. URL http://link.aps.org/doi/10.1103/PhysRevLett.104.213601

  16. M. Wollenhaupt, A. Assion, D. Liese, C. Sarpe-Tudoran, T. Baumert, S. Zamith, M. Bouchene, B. Girard, A. Flettner, U. Weichmann, G. Gerber, Phys. Rev. Lett. 89(17), 173001 (2002). DOI 10.1103/PhysRevLett.89.173001. URL http://link.aps.org/doi/10.1103/PhysRevLett.89.173001

  17. T. Remetter, P. Johnsson, J. Mauritsson, K. Varjú, Y. Ni, F. Lépine, E. Gustafsson, M. Kling, J. Khan, R. López-Martens, K.J. Schafer, M.J.J. Vrakking, A. L’Huillier, Nat. Phys. 2(5), 323 (2006). DOI 10.1038/nphys290. URL http://www.nature.com/doifinder/10.1038/nphys290

  18. F. Quéré, J. Itatani, G. Yudin, P. Corkum, Phys. Rev. Lett. 90(7), 073902 (2003). DOI 10.1103/PhysRevLett.90.073902. URL http://link.aps.org/doi/10.1103/PhysRevLett.90.073902

    Google Scholar 

  19. T. Weinacht, J. Ahn, P. Bucksbaum, Phys. Rev. Lett. 80(25), 5508 (1998). DOI 10.1103/PhysRevLett.80.5508. URL http://link.aps.org/doi/10.1103/PhysRevLett.80.5508

    Google Scholar 

  20. J. Mauritsson, T. Remetter, M. Swoboda, K. Klünder, A. L’Huillier, K. Schafer, O. Ghafur, F. Kelkensberg, W. Siu, P. Johnsson, M. Vrakking, I. Znakovskaya, T. Uphues, S. Zherebtsov, M. Kling, F. Lépine, E. Benedetti, F. Ferrari, G. Sansone, M. Nisoli, Phys. Rev. Lett. 105(5), 053001 (2010). DOI 10.1103/PhysRevLett.105.053001. URL http://link.aps.org/doi/10.1103/PhysRevLett.105.053001

    Google Scholar 

  21. D. Fittinghoff, J. Bowie, J. Sweetser, R. Jennings, M. Krumbüugel, K. DeLong, R. Trebino, I. Walmsley, Opt. Lett. 21(12), 884 (1996). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-21-12-884

    Google Scholar 

  22. C. Iaconis, V. Wong, I. Walmsley, IEEE J. Sel. Top. Quant. Electron. 4(2), 285 (1998). DOI 10.1109/2944.686734. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=686734

  23. P. Agostini, F. Fabre, G. Mainfray, G. Petite, N. Rahman, Phys. Rev. Lett. 42(17), 1127 (1979). DOI 10.1103/PhysRevLett.42.1127. URL http://link.aps.org/doi/10.1103/PhysRevLett.42.1127

    Google Scholar 

  24. D.G. Arbó, K.L. Ishikawa, K. Schiessl, E. Persson, J. Burgdörfer, Phys. Rev. A 81(2), 021403 (2010). DOI 10.1103/PhysRevA.81.021403. URL http://link.aps.org/doi/10.1103/PhysRevA.81.021403

    Google Scholar 

  25. D. Arbó, E. Persson, J. Burgdörfer, Phys. Rev. A 74(6), 063407 (2006). DOI 10.1103/PhysRevA.74.063407. URL http://link.aps.org/doi/10.1103/PhysRevA.74.063407

    Google Scholar 

  26. R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.U. Kühnel, S. Tschuch, C.D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, M. Kling, Phys. Rev. Lett. 103(5), 053001 (2009). DOI 10.1103/PhysRevLett.103.053001. URL http://link.aps.org/doi/10.1103/PhysRevLett.103.053001

    Google Scholar 

  27. D. Schumacher, F. Weihe, H. Muller, P. Bucksbaum, Phys. Rev. Lett. 73(10), 13441347 (1994). DOI doi/10.1103/PhysRevLett.73.1344. URL http://link.aps.org/doi/10.1103/PhysRevLett.73.1344

    Google Scholar 

  28. H. Muller, P. Bucksbaum, D. Schumacher, A. Zavriyev, J. Phys. B Atom. Mol. Opt. Phys. 23, 2761 (1990). DOI 10.1088/0953-4075/23/16/018. URL http://iopscience.iop.org/0953-4075/23/16/018

  29. M. Lewenstein, K. Kulander, K. Schafer, P. Bucksbaum, Phys. Rev. A 51(2), 1495 (1995). DOI 10.1103/PhysRevA.51.1495. URL http://link.aps.org/doi/10.1103/PhysRevA.51.1495

    Google Scholar 

  30. D. Arbó, K. Ishikawa, K. Schiessl, E. Persson, J. Burgdörfer, Phys. Rev. A 82(4), 043426 (2010). DOI 10.1103/PhysRevA.82.043426. URL http://link.aps.org/doi/10.1103/PhysRevA.82.043426

    Google Scholar 

  31. D. Arbó, S. Yoshida, E. Persson, K. Dimitriou, J. Burgdörfer, Phys. Rev. Lett. 96(14), 143003 (2006). DOI 10.1103/PhysRevLett.96.143003. URL http://link.aps.org/doi/10.1103/PhysRevLett.96.143003

    Google Scholar 

  32. S. Chelkowski, A. Bandrauk, A. Apolonski, Phys. Rev. A 70(1), 013815 (2004). DOI 10.1103/PhysRevA.70.013815. URL http://link.aps.org/doi/10.1103/PhysRevA.70.013815

    Google Scholar 

  33. S. Chelkowski, A. Bandrauk, Phys. Rev. A 71(5), 053815 (2005). DOI 10.1103/PhysRevA.71.053815. URL http://link.aps.org/doi/10.1103/PhysRevA.71.053815

    Google Scholar 

  34. O. Smirnova, M. Spanner, M. Ivanov, Phys. Rev. A 77(3), 033407 (2008). DOI 10.1103/PhysRevA.77.033407. URL http://link.aps.org/doi/10.1103/PhysRevA.77.033407

    Google Scholar 

  35. F. Ehlotzky, Phys. Rep. 345(4), 175 (2001). DOI 10.1016/S0370-1573(00)00100-9. URL http://linkinghub.elsevier.com/retrieve/pii/S0370157300001009

  36. H. Ohmura, T. Nakanaga, M. Tachiya, Phys. Rev. Lett. 92(11), 113002 (2004). DOI 10.1103/PhysRevLett.92.113002. URL http://link.aps.org/doi/10.1103/PhysRevLett.92.113002

    Google Scholar 

  37. H. Ohmura, N. Saito, M. Tachiya, Phys. Rev. Lett. 96(17), 173001 (2006). DOI 10.1103/PhysRevLett.96.173001. URL http://link.aps.org/doi/10.1103/PhysRevLett.96.173001

    Google Scholar 

  38. D. Ray, F. He, S. De, W. Cao, H. Mashiko, P. Ranitovic, K. Singh, I. Znakovskaya, U. Thumm, G. Paulus, M. Kling, I. Litvinyuk, C. Cocke, Phys. Rev. Lett. 103(22), 223201 (2009). DOI 10.1103/PhysRevLett.103.223201. URL http://link.aps.org/doi/10.1103/PhysRevLett.103.223201

    Google Scholar 

  39. S. De, I. Znakovskaya, D. Ray, F. Anis, N. Johnson, I. Bocharova, M. Magrakvelidze, B. Esry, C. Cocke, I. Litvinyuk, M. Kling, Phys. Rev. Lett. 103(15), 153002 (2009). DOI 10.1103/PhysRevLett.103.153002. URL http://link.aps.org/doi/10.1103/PhysRevLett.103.153002

  40. R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, H. Schmidt-Böcking, Phys. Rep. 330(2–3), 95 (2000). DOI 10.1016/S0370-1573(99)00109-X. URL http://linkinghub.elsevier.com/retrieve/pii/S037015739900109X

  41. R. Moshammer, B. Feuerstein, W. Schmitt, A. Dorn, C. Schröter, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, Others, Phys. Rev. Lett. 84(3), 447 (2000). URL http://link.aps.org/doi/10.1103/PhysRevLett.84.447

    Google Scholar 

  42. G. Yudin, M. Ivanov, Phys. Rev. A 64(1), 013409 (2001). DOI 10.1103/PhysRevA.64.013409. URL http://link.aps.org/doi/10.1103/PhysRevA.64.013409

    Google Scholar 

  43. X.M. Tong, C.D. Lin, J. Phys. B Atom. Mol. Opt. Phys. 38(15), 2593 (2005). DOI 10.1088/0953-4075/38/15/001. URL http://stacks.iop.org/0953-4075/38/i=15/a=001?key=crossref.7d04da6e26e52de9b427ea49c7ca2a83

  44. N. Delone, V. Krainov, J. Opt. Soc. Am. B 8(6), 1207 (1991). URL http://www.opticsinfobase.org/ol/ViewMedia.cfm?id=6026%5C%26seq=0

    Google Scholar 

  45. P. Ho, J. Eberly, Phys. Rev. Lett. 95(19), 193002 (2005). DOI 10.1103/PhysRevLett.95.193002. URL http://link.aps.org/doi/10.1103/PhysRevLett.95.193002

    Google Scholar 

  46. P. Ho, R. Panfili, S. Haan, J. Eberly, Phys. Rev. Lett. 94(9), 093002 (2005). DOI 10.1103/PhysRevLett.94.093002. URL http://link.aps.org/doi/10.1103/PhysRevLett.94.093002

    Google Scholar 

  47. X. Xie, A. Scrinzi, M. Wickenhauser, A. Baltuška, I. Barth, M. Kitzler, Phys. Rev. Lett. 101(3), 033901 (2008). DOI 10.1103/PhysRevLett.101.033901. URL http://link.aps.org/doi/10.1103/PhysRevLett.101.033901

    Google Scholar 

  48. P. Dietrich, N. Burnett, M. Ivanov, P. Corkum, Phys. Rev. A 50(5), R3585 (1994). DOI 10.1103/PhysRevA.50.R3585. URL http://link.aps.org/doi/10.1103/PhysRevA.50.R3585

  49. X. Zhou, R. Lock, W. Li, N. Wagner, M. Murnane, H. Kapteyn, Phys. Rev. Lett. 100(7), 073902 (2008). DOI 10.1103/PhysRevLett.100.073902. URL http://link.aps.org/doi/10.1103/PhysRevLett.100.073902

    Google Scholar 

  50. R. Freeman, P. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, M. Geusic, Phys. Rev. Lett. 59(10), 1092 (1987). DOI 10.1103/PhysRevLett.59.1092. URL http://link.aps.org/doi/10.1103/PhysRevLett.59.1092

    Google Scholar 

  51. W. Li, X. Zhou, R. Lock, S. Patchkovskii, A. Stolow, H.C. Kapteyn, M.M. Murnane, Science 322(5905), 1207 (2008). DOI 10.1126/science.1163077. URL http://www.ncbi.nlm.nih.gov/pubmed/18974317

  52. E. Goulielmakis, Z.H. Loh, A. Wirth, R. Santra, N. Rohringer, V.S. Yakovlev, S. Zherebtsov, T. Pfeifer, A.M. Azzeer, M.F. Kling, S.R. Leone, F. Krausz, Nature 466(7307), 739 (2010). DOI 10.1038/nature09212. URL http://www.nature.com/doifinder/10.1038/nature09212

  53. M. Uiberacker, T. Uphues, M. Schultze, A.J. Verhoef, V. Yakovlev, M.F. Kling, J. Rauschenberger, N.M. Kabachnik, H. Schröder, M. Lezius, K.L. Kompa, H.G. Muller, M.J.J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, F. Krausz, Nature 446(7136), 627 (2007). DOI 10.1038/nature05648. URL http://www.ncbi.nlm.nih.gov/pubmed/17410167

Download references

Acknowledgements

We acknowledge, funding by the Austrian Science Fund (FWF) under grants P21463-N22 and SFB-016 and discussions with J. Burgdörfer, D. Arbó, E. Persson, and S. Gräfe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kitzler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kitzler, M., Xie, X., Roither, S., Kartashov, D., Baltuška, A. (2012). Controlling the Motion of Electronic Wavepackets Using Cycle-Sculpted Two-Color Laser Fields. In: Yamanouchi, K., Nisoli, M., Hill, W. (eds) Progress in Ultrafast Intense Laser Science VIII. Springer Series in Chemical Physics, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28726-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28726-8_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28725-1

  • Online ISBN: 978-3-642-28726-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics