Skip to main content

Two-XUV-Photon Processes: A Key Instrument in Attosecond Pulse Metrology and Time Domain Applications

  • Chapter
  • First Online:
Progress in Ultrafast Intense Laser Science VIII

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 103))

Abstract

Attosecond pulses today are generated at pulse energies leading to intensities sufficient to induce two-photon transitions in the extreme ultraviolet (XUV) spectral region. Recently, ultra-broadband coherent XUV continua fulfill also the requirements in inducing such processes. Two-XUV-photon ionization is a pivotal tool in attosecond pulse metrology, as well as for XUV-pump-XUV-probe applications targeting the tracking of ultrafast dynamics, providing at the same time spatial selectivity.Based on these developments, this chapter (a) reviews approaches leading to high intensities of attosecond pulse trains and coherent XUV continua; (b) reviews metrology approaches based on two-XUV-photon ionization, showing their importance through comparative studies with existing XUV-IR cross-correlation approaches; and (c) reports the feasibility of XUV-pump-XUV-probe applications at the 1fs resolution level, in an experiment, where atomic coherence is induced in a rich manifold of doubly excited and inner-shell excited autoionizing states, the evolution of which is tracked through double ionization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Agostini L.F. DiMauro Rep. Prog. Phys 67, 813–855 (2004)

    Google Scholar 

  2. P.B. Corkum, F. Krausz Nature Phys 3, 381–387 (2007) and references therein

    Google Scholar 

  3. F. Krausz, M. Ivanov Rev. Mod. Phys 81, 163 (2009)

    Google Scholar 

  4. G. Sansone et al., Science 314, 442 (2006)

    Google Scholar 

  5. E. Goulielmakis et al. Science 320, 1614 (2008)

    Google Scholar 

  6. M. Hentschel et al., Nature 414, 509 (2002)

    Google Scholar 

  7. R. Kienberger et al., Nature 427, 817 (2004)

    Google Scholar 

  8. A. Baltuska et al., Nature 421, 611 (2003)

    Google Scholar 

  9. F. Ferrari et al., Nature Photonics 4, 875, (2010)

    Google Scholar 

  10. S. Witte et al., Opt. Express 14, 8168 (2007)

    Google Scholar 

  11. D. Herrmann et al., Opt. Lett. 34, 2459 (2009)

    Google Scholar 

  12. D. Descamps et al., Phys. Rev. A. 64 031404 (2001)

    Google Scholar 

  13. Y. Kobayashi et al. Opt. Lett. 23, 64 (1998)

    Google Scholar 

  14. T. Sekikawa et al. Phys. Rev. Lett. 23, 64 (1998)

    Google Scholar 

  15. T. Sekikawa et al. Phys. Rev. Lett. 88, 193902 (2002)

    Google Scholar 

  16. A. Peralta Conde et al., Phys. Rev. A. 79, 061405 (2009)

    Google Scholar 

  17. N.A. Papadogiannis et al., Phys. Rev. Lett. 90, 133902 (2003)

    Google Scholar 

  18. P. Tzallas et al., Nature 426, 267 (2003)

    Google Scholar 

  19. P. Tzallas et al., J. Mod. Opt. 52, 321 (2005)

    Google Scholar 

  20. Y. Nabekawa et. al. Phys. Rev. Lett. 96, 083901 (2006)

    Google Scholar 

  21. Y. Nabekawa et. al. Phys. Rev. Lett. 97, 153904 (2006)

    Google Scholar 

  22. Y. Namura et al., Nature Physics 5, 124 (2009)

    Google Scholar 

  23. R. Hörlein et al., New J. Phys. 12, 043020 (2010)

    Google Scholar 

  24. P.M. Paul et al., Science 292, 1689 (2001)

    Google Scholar 

  25. J. Kruse, et al., Phys. Rev. A. 82, 021402(R) (2010)

    Google Scholar 

  26. J. Kruse, et al., Phys. Rev. A. 82, 033438 (2010)

    Google Scholar 

  27. P. Tzallas, et al., Nature Phys. 3, 846 (2007)

    Google Scholar 

  28. E. Skantzakis et al., Opt. Lett. 34, 1732 (2009)

    Google Scholar 

  29. E. Skantzakis et al., Phys. Rev. Lett. 105, 043902 (2010)

    Google Scholar 

  30. P. Tzallas et al., Nature Phys. DOI: 10.1038/NPHYS2033 (2011)

    Google Scholar 

  31. P. Tzallas et al., Phys. Rev. A. 82, 061401(R) (2010)

    Google Scholar 

  32. E. Constant et al., Phys. Rev. Lett. 82, 1668 (1999)

    Google Scholar 

  33. E.J. Takahashi et al., IEEE J. Sel. Top. Q. Elec. 10, 1315 (2004)

    Google Scholar 

  34. J.L. Krause et al., Phys. Rev. A. 45, 4998, (1992)

    Google Scholar 

  35. J.F. Hergott et al., Phys. Rev. A. 66, 021801(R) (2002)

    Google Scholar 

  36. J. Seres et al., Nature Phys. 3, 878 (2007)

    Google Scholar 

  37. F. Quere et al., Phys. Rev. Lett. 96, 125004 (2006)

    Google Scholar 

  38. A. Tarasevitch et al., Phys. Rev. Lett. 98, 103902 (2007)

    Google Scholar 

  39. F. Quere et al., Phys. Rev. Lett. 100, 095004 (2008)

    Google Scholar 

  40. C. Thaury et al., Nature Phys. 4, 631 (2008)

    Google Scholar 

  41. S.V. Bulanov et al., Phys. Plasmas. 1, 745 (1994)

    Google Scholar 

  42. G.D. Tsakiris et al., New J. Phys. 8, 19 (2006)

    Google Scholar 

  43. T. Baeva et al., Phys. Rev. E. 74, 046404 (2006)

    Google Scholar 

  44. B. Dromey et al., Nature Phys. 2, 456 (2006)

    Google Scholar 

  45. S. Gordienko et al., Phys. Rev. Lett. 93, 115002 (2004)

    Google Scholar 

  46. R. Lichters et al., Phys. Plasmas 3, 3425 (1996)

    Google Scholar 

  47. P. Tzallas et al., Progress in Ultrafast Intense Laser Science, vol. VII. (Springer, New York) p.163, (2010) (ISBN: 978-3-642-18326-3)

    Google Scholar 

  48. O. Tcherbakoff et al., Phys. Rev. A.68, 043804 (2003)

    Google Scholar 

  49. C. Altucci et al., Opt. Lett. 33, 2943 (2008)

    Google Scholar 

  50. H. Mashiko et al., Phys. Rev. Lett. 100, 103906 (2008)

    Google Scholar 

  51. E. Takahashi et al., Phys. Rev. Lett. 104, 233901 (2010)

    Google Scholar 

  52. V.V. Strelkov et al., New J. Phys. 10, 083040 (2008)

    Google Scholar 

  53. I.J. Sola et al., Nature Phys. 2, 319 (2006)

    Google Scholar 

  54. G. Sansone, Phys. Rev. A. 79, 053410 (2009)

    Google Scholar 

  55. C. Iaconis, I.A. Walmsley Opt. Lett. 23, 792 (1998)

    Google Scholar 

  56. M. Drescher et al., Science291, 1923 (2001)

    Google Scholar 

  57. Y. Mairesse, F. Quere, Phys. Rev. A. 71, 011401(R) (2005)

    Google Scholar 

  58. E. Cormier et al., Phys. Rev. Lett. 94, 033905 (2005)

    Google Scholar 

  59. Y. Mairesse et al., Phys. Rev. Lett. 94, 173903 (2005)

    Google Scholar 

  60. N. Dudovich et al., Nature Phys. 2, 781 (2006)

    Google Scholar 

  61. J.M. Dahlstrom et al., Phys. Rev. A. 80, 033836 (2009)

    Google Scholar 

  62. P.B. Corkum Phys. Rev. Lett. 71, 1994 (1993)

    Google Scholar 

  63. M. Lewenstein et al., Phys. Rev. A. 49, 2117 (1994)

    Google Scholar 

  64. Ph. Antoine et al., Phys. Rev. Lett. 77, 12347 (1996)

    Google Scholar 

  65. M.B. Gaarde et al., Phys. Rev. Lett. 89, 213901 (2002)

    Google Scholar 

  66. P. Salieres et al., Phys. Rev. Lett. 74, 3776 (1995)

    Google Scholar 

  67. M. Bellini et al., Phys. Rev. Lett. 81, 297 (1998)

    Google Scholar 

  68. P. Lambropoulos et al., Phys. Rev. A. 78, 055402 (2008)

    Google Scholar 

  69. T. Nakajima, L.A.A. Nikolopoulos Phys. Rev. A. 66, 041402(R) (2002)

    Google Scholar 

  70. E. Benis et al., Phys. Rev. A. 74, 051402 (2006)

    Google Scholar 

  71. M.A. Kornberg, P. Lambropoulos J. Phys. B. 32, L63 (1999)

    Google Scholar 

  72. V. Blanchet et al., J. Chem. Phys. 108, 4862 (1998)

    Google Scholar 

  73. B. Campbell et al., Phys. Rev. A. 57, 4616 (1998)

    Google Scholar 

  74. R.R. Jones et al., Phys. Rev. Lett. 71, 2575 (1993)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the European Commission programmes ULF, ALADIN (Grant Agreement No. 228334), ATTOFEL (Grant Agreement No. 238362), FASTQUAST (PITN-GA-2008-214962), ELI-PP (Grant Agreement No. 212105) and FLUX program (Contract No. PIAPP-GA-2008-218053) of the 7th FP. We thank G. Konstantinidis and A. Kostopoulos for their assistance in developing special optical components. L.A.A.N. acknowledges support from COST CM0702 action and ICHEC at Dublin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Charalambidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tzallas, P., Kruse, J., Skantzakis, E., Nikolopoulos, L.A.A., Tsakiris, G.D., Charalambidis, D. (2012). Two-XUV-Photon Processes: A Key Instrument in Attosecond Pulse Metrology and Time Domain Applications. In: Yamanouchi, K., Nisoli, M., Hill, W. (eds) Progress in Ultrafast Intense Laser Science VIII. Springer Series in Chemical Physics, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28726-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28726-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28725-1

  • Online ISBN: 978-3-642-28726-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics