Skip to main content

Isotopes in Solids

  • Chapter
  • First Online:
Isotopes in Condensed Matter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 162))

  • 833 Accesses

Abstract

The modern view of solid-state physics is based on the presentation of elementary excitations, having mass, quasiimpuls, electrical charge and so on. According to this presentation the elementary excitations of the non-metallic materials are electrons (holes), excitons (polaritons) and phonons. The latter are the elementary excitations of the crystal lattice, the dynamics of which is described in harmonic approximation as is well known, the base of such view on solids is the multiparticle approach. In this view, the quasiparticles of solids are ideal gas, which describe the behavior of the system, e.g. noninteracting electrons. We should take into account such an approach to consider the theory of elementary excitations as a suitable model for the application of the common methods of quantum mechanics for the solution of the solid-state physics task. In this chapter we consider not only the manifestations of the isotope effect on different solids, but also the new accurate results, showing the quantitative changes of different characteristics of phonons and electrons (excitons) in solids with isotopic substitution. The isotopic effect becomes more pronounced when dealing with solids. For example, on substitution of H with D the change in energy of the electron transition in solid state (e.g. LiH ) is two orders of magnitude larger than in atomic hydrogen. Using elementary excitations to describe the complicated motion of many particles has turned out to be an extraordinarily useful device in contemporary physics, and it is the view of a solid which we describe in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Pines, Elementary Excitations in Solids (W.A. Benjamin, Inc., New York, 1963)

    Google Scholar 

  2. S.I. Pekar, Crystaloptics and Addition Waves (Kiev, Naukova Dumka, 1982) (in Russian)

    Google Scholar 

  3. G.P. Srivastava, The Physics of Phonons (Hilger, Bristol, 1990)

    Google Scholar 

  4. V.G. Plekhanov, Isotopetronics-New Directions of Nanoscience, ArXiv, phys./1007.5386

    Google Scholar 

  5. V.G. Plekhanov, Isotopic and disorder effects in large exciton spectroscopy. Physcs–Uspekhi (Moscow) 40, 553–579 (1997)

    Google Scholar 

  6. J. Callaway, Energy Band Structure (Academic Press, New York, 1964)

    Google Scholar 

  7. R.M. Martin, Electronic Structure—Basic Theory and Practical Methods (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  8. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Reinhart and Winston, New York, 1976)

    Google Scholar 

  9. J.M. Ziman, Electrons and Phonons (Oxford University Press, London, 1963)

    Google Scholar 

  10. V.G. Plekhanov, Giant Isotope Effect in Solids (Stefan University Press, La Jola, 2004)

    Google Scholar 

  11. N.F. Mott, R.V. Gurney, Electron Processes in Ionic Crystals (Clarendon Press, Oxford, 1948)

    Google Scholar 

  12. J. Slater, The Self-Consistent Field for Molecules and Solids (McGraw-Hill, New York, 1975)

    Google Scholar 

  13. W.B. Fowler, Influence of electronic polarization on the optical properties of insulators. Phys. Rev. 151, 657–667 (1966)

    CAS  Google Scholar 

  14. D.H. Ewing, F. Seitz, On the electronic constitution of crystals: LiF and LiH. Phys. Rev. 50, 760–777 (1936)

    CAS  Google Scholar 

  15. F. Perrot, Bulk properties of lithium hydride up to 100 Mbar. Phys. Stat. Sol. (b) 77, 517–525 (1976)

    CAS  Google Scholar 

  16. G.S. Zavt, K. Kalder et al., Electron excitation and luminescence LiH single crystals, Fiz. Tverd. Tela (St. Petersburg) 18, 2724–2730 (1976) (in Russian).

    Google Scholar 

  17. N.I. Kulikov, Electron structure, state equation and phase transitions insulator—metal in hydride lithium, ibid, 20, 2027–2035 (1978) (in Russian)

    Google Scholar 

  18. G. Grosso, G.P. Parravichini, Hartree-Fock energy bands by the orthogonalized-plane-wave method: lithium hydride results. Phys Rev. B20, 2366–2372 (1979)

    Google Scholar 

  19. S. Baroni, G.P. Parravichini, G. Pezzica, Quasiparticle band structure of lithium hydride. Phys. Rev. B32, 4077–4087 (1985)

    Google Scholar 

  20. A.B. Kunz, D.J. Mikish, Electronic structure of LiH and NaH, ibid, B11, 1700–1704 (1975)

    Google Scholar 

  21. T.A. Betenekova, I.N. Shabanova, F.F. Gavrilov, The structure of valence band in lithium hydride, Fiz. Tverd. Tela 20, 2470–2477 (1978) (in Russian)

    Google Scholar 

  22. K. Ichikawa, N. Susuki, K. Tsutsumi, Photoelectron spectroscopic study of LiH. J. Phys. Soc. Japan 50, 3650–3654 (1981)

    CAS  Google Scholar 

  23. R.A. Kink, M.F. Kink, T.A. Soovik, Reflection spectra of lithium hydride crystals in 4–25 eV at 5 K. Nucl. Instrum. Methods Phys. Res. A261, 138–140 (1987)

    CAS  Google Scholar 

  24. V.G. Plekhanov, V.I. Altukhov, Determination of exciton and exciton–phonon interaction parameters via resonant secondary emission of insulators. Sov. Phys. Solid State 23, 439–447 (1981)

    Google Scholar 

  25. V.G. Plekhanov, Nuclear Technology of the Creation of Quantum Dots in Graphene, (Science Transactient of SHI, Tallinn, 2011), pp. 66–71

    Google Scholar 

  26. A.A. Blistanov, in Acoustic Crystals: Handbook, ed. by M.T. Shchaskol’skaya (Nauka, Moscow, 1982) (in Russian)

    Google Scholar 

  27. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986)

    Google Scholar 

  28. R. Wyckoff, Crystal Structures (Interscience, New York, 1963)

    Google Scholar 

  29. M.L. Cohen, J. Chelikowsky, Electronic Properties and Optical Properties of Semiconductors, 2nd ed. Springer Series Solid-State Science, Vol. 75 (Springer, Berlin, 1989)

    Google Scholar 

  30. J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall Englewood Cliffs, New Jersey, 1971)

    Google Scholar 

  31. V.G. Plekhanov, Elementary excitations in isotope mixed crystals. Phys. Reports 410, 1–235 (2005)

    CAS  Google Scholar 

  32. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (Pergamon Press, New York, 1977)

    Google Scholar 

  33. R. Loudon, The Raman effect in crystals. Adv. Phys. 13, 423–488 (1964)

    CAS  Google Scholar 

  34. R.A. Cowley, Anharmonicity, J. Phys. (Paris). 26, 659–664 (1965)

    Google Scholar 

  35. R.A. Cowley, Anharmonic crystals, Rep. Prog. Phys. 31, 123–166 (1968)

    Google Scholar 

  36. R.A. Cowley, in Anharmonicity, ed. by A. Anderson. Raman Effect, (Marcel Dekker, New York, 1971)

    Google Scholar 

  37. M.A. Eliashevich, Mechanics of the vibrations of molecules, Uspekhi Fiz. Nauk (Moscow) 48, 482–544 (1946) (in Russian)

    Google Scholar 

  38. D.A. Long, Raman Spectroscopy (McGraw-Hill Inc., London, 1977)

    Google Scholar 

  39. J.L. Birman, in Space Group Symmetry, Handbuch fur Physik, vol. 25/2b (Springer, Berlin, 1974)

    Google Scholar 

  40. M. Cardona, M.L.W. Thewalt, Isotope effect on the optical spectra of semiconductors. Rev. Mod. Phys. 77, 1173–1224 (2005)

    CAS  Google Scholar 

  41. V.F. Agekyan, A.M. Asnin, V.M. Kryukov et al., Isotope effect in germanium, Fiz. Tverd. tela (St. Petersburg) 31, 101–104 (1989) (in Russian)

    Google Scholar 

  42. M. Lax, E. Burstein, Infrared lattice absorption in ionic and homopolar crystals. Phys. Rev. 97, 39–52 (1955)

    CAS  Google Scholar 

  43. H.D. Fuchs, P. Etchegoin, M. Cardona et al., Vibrational band modes in germanium: isotopic—disorder induced Raman scattering. Phys. Rev. Let. 70, 1715–1718 (1993)

    CAS  Google Scholar 

  44. H. Hanzawa, N. Umemura, Y. Nisida, H. Kanda, Disorder effect of nitrogen impurities, irradiation induced defects and \(^{13}\)C composition on the Raman spectrum in synthetic I\(^{b}\) diamond. Phys. Rev. B54, 3793–3799 (1996)

    Google Scholar 

  45. V.G. Plekhanov, Isotope Effects in Solid State Physics, in Semiconductors and Semimetals, vol. 68, ed. by R.K. Willardson, E. Weber (Academic Press, San Diego, 2001)

    Google Scholar 

  46. V.G. Plekhanov, Isotope effect in lattice dynamics. Physics-Uspekhi (Moscow) 46, 689–715 (2003)

    CAS  Google Scholar 

  47. R.M. Chrenko, \(^{13}\)C-doped diamond: Raman spectra. Appl. Phys. 63, 5873–5875 (1988)

    CAS  Google Scholar 

  48. K.C. Hass, M.A. Tamor, T.R. Anthony, W.F. Banholzer, Effect of isotopic disorder on the phonon spectrum of diamond. Phys. Rev. B44, 12046–12053 (1991)

    Google Scholar 

  49. S.H. Solin, A.K. Ramdas, Raman spectrum of diamond. Phys. Rev. B1, 1687–1699 (1970)

    Google Scholar 

  50. V.G. Plekhanov, Isotope effect on the lattice dynamics. Mater. Sci. Eng. R35, 139–237 (2001)

    CAS  Google Scholar 

  51. V.G. Plekhanov, Lattice—dynamics of isotope—mixed crystals, ArXiv cond–mat/1007.5125 (2010).

    Google Scholar 

  52. R.J. Elliott, J.A. Krumhansl, P.L. Leath, The thery and properties of randomly disordered crystals and physical systems. Rev. Mod. Phys. 46, 465–542 (1974)

    CAS  Google Scholar 

  53. I.F. Chang, S.S. Mitra, Long-wavelength of optical phonons in mixed crystals. Adv. Phys. 20, 360–404 (1971)

    Google Scholar 

  54. I.P. Ipatova, Universal parameters in mixed crystals, in [120] Ch. p. 1–34, 1988

    Google Scholar 

  55. V.G. Plekhanov, Lattice dynamics of isotopically mixed crystals, Opt. spectrosc. (St. Petersburg) 82, 95–24 (1997)

    Google Scholar 

  56. V.G. Plekhanov, Experimental evidence of strong phonon scattering in isotopical disordered systems: the case LiH\(_{x}\)D\(_{1-x}\). Phys. Rev. B51, 8874–8878 (1995)

    Google Scholar 

  57. V.G. Plekhanov, Fundamentals and applications of isotope effect in modern technology, J. Nucl. Sci. Technol. (Japan) 43, 375–381 (2006). ArXiv: cond–mat/0807.2521 (2008)

    Google Scholar 

  58. G. Herzberg, Molecular Spectra and Molecular Structure (D. van Nostrand, New York, 1951)

    Google Scholar 

  59. A.F. Kapustinsky, L.M. Shamovsky, K.S. Bayushkina, Thermochemistry of isotopes. Acta Physicochim. (USSR) 7, 799–810 (1937)

    Google Scholar 

  60. V.G. Plekhanov, T.A. Betenekova, V.A. Pustovarov et al., Excitons and some peculiarities of exciton–phonon interactions. Sov. Phys. Solid State 18, 1422–1424 (1976)

    Google Scholar 

  61. V.G. Plekhanov, Wannier—Mott excitons in isotope—disordered crystals. Rep. Prog. Phys. 61, 1045–1095 (1998)

    CAS  Google Scholar 

  62. F.I. Kreingol’d, K.F. Lider, M.B. Shabaeva, Influence of isotope substitution sulfur on the exciton spectrum in CdS crystal, Fiz. Tverd. Tela (St. Petersburg) 26, 3940–3941 (1984) (in Russian)

    Google Scholar 

  63. Y. Onodera, Y. Toyozawa, Persistence and amalgamation types in the electronic structure of mixed crystals. J. Phys. Soc. Japan 24, 341–355 (1968)

    CAS  Google Scholar 

  64. Y. Toyozawa, Optical Processes in Solids, (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  65. F.I. Kreingol’d, K.F. Lider, K.I. Solov’ev, Isotope shift of exciton line in absorption spectrum Cu\(_{2}\)O, JETP Lett. (Moscow) 23, 679–681 (1976) (in Russian)

    Google Scholar 

  66. F.I. Kreingol’d, K.F. Lider, V.F. Sapega, Influence of isotope substitution on the exciton spectrum in Cu\(_{2}\)O crystal, Fiz. Tverd. Tela (St. Petersburg) 19, 3158–3160 (1977) (in Russian)

    Google Scholar 

  67. F.I. Kreingol’d, B.S. Kulinkin, Influence of isotope substitution on the forbidden gap of ZnO crystals, ibid, 28, 3164–3166 (1986) (in Russian).

    Google Scholar 

  68. F.I. Kreingol’d, Dependence of band gap ZnO on zero-point energy, ibid, 20, 3138–3140 (1978) (in Russian)

    Google Scholar 

  69. J.M. Zhang, T. Ruf, R. Lauck et al., Sulfur isotope effect on the excitonic spectra of CdS. Phys. Rev. B57, 9716–9722 (1998)

    Google Scholar 

  70. T.A. Meyer, M.L.W. Thewalt, R. Lauck et al., Sulfur isotope effect on the excitonic spectra of CdS. Phys. Rev. B69, 115214–115215 (2004)

    Google Scholar 

  71. G.L. Bir, G.E. Picus, Symmetry and Deformation in Semiconductors (Science, Moscow, 1972) (in Russian)

    Google Scholar 

  72. D.G. Thomas (ed.), II–VI Semiconducting Comounds (Benjamin, New York, 1967)

    Google Scholar 

  73. L.F. Lastras-Martinez, T. Ruf, M. Konuma et al., Isotopic effect on the dielectric response of Si around the E\(_{1}\) gap, Phys. Rev. B61, 12946–12951 (2000)

    Google Scholar 

  74. D. Karaskaja, M.L.W. Thewalt, T. Ruf et al., Photoluminescence studies of isotopically—enriched silicon: Isotopic effects on indirect electronic band gap and phonon energies. Solid State Commun. 123, 87–92 (2003)

    Google Scholar 

  75. S. Tsoi, H. Alowadhi, X. Lu et al., Electron–phonon renormalization of electronic band gaps of semiconductors: Isotopically enriched silicon. Phys. Rev. B70, 193201–193204 (2004)

    Google Scholar 

  76. A.K. Ramdas, S. Rodriguez, S. Tsoi et al., Electronic band gap of semiconductors as influenced by their isotopic composition. Solid State Commun. 133, 709–714 (2005)

    CAS  Google Scholar 

  77. S. Tsoi, S. Rodriguez, A.K. Ramdas et al., Isotopic dependence of the E\(_{0}\) and E\(_{1}\) direct gaps in the electronic band structure of Si. Phys. Rev. B72, 153203–153204 (2005)

    Google Scholar 

  78. H. Kim, S. Rodriguez, T.R. Anthony, Electronic transitions of holes bound to boron acceptors in isotopically controlled diamond. Solid State Commun. 102, 861–865 (1997)

    CAS  Google Scholar 

  79. M. Cardona, Dependence of the excitation energies of boron in diamond on isotopic mass. Solid State Commun. 121, 7–8 (2002)

    Google Scholar 

  80. A.A. Klochikhin, V.G. Plekhanov, Isotope effect on the Wannier—Mott exciton levels. Sov. Phys. Solid state 22, 342–344 (1980)

    Google Scholar 

  81. V.G. Plekhanov, Direct observation of the effect of isotope-induced-disorder on exciton binding energy in LiH\(_{x}\)D\(_{1-x}\) mixed crystals. J. Phys. Condens. Matter 19, 086221–086229 (2007)

    Google Scholar 

  82. P.G. Klemens, Thermal conductivity and lattice vibrational modes, in Solid state Physics: Advances in Research and Applications, vol. 7, ed. by F. Seitz, D. Turnbull (Academic Press, New York, 1958)

    Google Scholar 

  83. M.G. Holland, Thermal Conductivity, in Physics of III–V Compounds (Semiconductors and Semimetals), vol. 2, ed. by R.K. Willardson, A.C. Beer (Academic Press, New York, 1966)

    Google Scholar 

  84. Y.S. Toulookian, R.W. Powel, C.Y. Ho, P.G. Klemens, Thermal Conductivity Metallic Elements and Alloys. in Thermophysical Properties of Materials, vol. 1 (IFI Plenum Press, New York–Washington, 1970)

    Google Scholar 

  85. R.Z. Berman, Thermal Conduction in Solids (Clarendon Press, Oxford, 1976)

    Google Scholar 

  86. J. Callaway, Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959)

    CAS  Google Scholar 

  87. R. Peierls, Quantum Theory of Solids (Clarendon Press, Oxford, 1955)

    Google Scholar 

  88. J.M. Ziman, Models of Disorder (Cambridge University Press, Cambridge, 1979)

    Google Scholar 

  89. I. Ya, Pomeranchuk, About thermal conductivity of dielectrics. J. Phys. (USSR) 6, 237–246 (1942)

    Google Scholar 

  90. T.H. Geballe, G.W. Hull, Isotopic and other types of thermal resistance in germanium. Phys. Rev. 110, 773–775 (1958)

    CAS  Google Scholar 

  91. D.G. Onn, A. Witek, Y.Z. Qiu et al., Some aspect of the thermal conductivity of isotopically enriched diamond single crystals. Phys. Rev. Lett. 68, 2806–2809 (1992)

    CAS  Google Scholar 

  92. J.R. Olson, R.O. Pohl, J.W. Vandersande et al., Thermal conductivity of diamond between 170 and 1200 K and the isotopic effect, Phys. Rev. B47, 14850–14856 (1993)

    Google Scholar 

  93. L. Wei, P.K. Kuo, R.L. Thomas, Thermal conductivity of isotopically modified single crystal diamond. Phys. Rev. Lett. 79, 3764–3767 (1993)

    Google Scholar 

  94. P. Debye, The Debye theory of specific heat, Ann. Phys. (Leipzig) 4, 39, 789–803 (1912)

    Google Scholar 

  95. M. Cardona, R.K. Kremer, M. Sanati et al., Measurements of the heat capacity of diamond with different isotopic composition. Solid State Commun. 133, 465–468 (2005)

    CAS  Google Scholar 

  96. V.G. Plekhanov, Isotope—Mixed Crystals: Fundamentals and Applications (Bentham, e-books, 2011) (ICBN: 978-1-60805-091-8)

    Google Scholar 

  97. M. Asen-Palmer, K. Bartkowsky, E. Gmelin et al., Thermal conductivity of germanium crystals with different isotopic composition, Phys. Rev. B56, 9431–9447 (1997)

    Google Scholar 

  98. W.C. Capinski, H.J. Maris, M. Asen-Palmer et al., Thermal conductivity of isotopically enriched Si, Appl. Phys. Lett. 71, 2109–2111 (1997)

    Google Scholar 

  99. W.C. Capinski, H.J. Maris, S. Tamura, Analysis of the effect of isotope scattering on the thermal conductivity of crystalline silicon. Phys. Rev. B59, 10105–10110 (1999)

    Google Scholar 

  100. T. Ruf, R.W. Henn, M. Asen-Palmer et al., Thermal conductivity of isotopically enriched silicon, Solid State Commun. 115, 243–247 (2000); Erratum 127, 257 (2003)

    Google Scholar 

  101. A.P. Zhernov, A.V. Inyushkin, Kinetic coefficients in isotopically disordered crystals. Physics-Uspekhi (Moscow) 45, 573–599 (2002)

    Google Scholar 

  102. V.G. Plekhanov, Isotope engineering. Physics-Uspekhi (Moscow) 43, 1147–1154 (2000)

    CAS  Google Scholar 

  103. M. Omini, A. Sparavigna, Heat transport in dielectric solids with diamond structure. Nuovo Cimento D19, 1537–1563 (1997)

    Google Scholar 

  104. A. Sparavigna, Influence of isotope scattering on the thermal conductivity of diamond, Phys. Rev. B65, 064305-1–064305-5 (2002), ibid, B67, 144305–4 (2003)

    Google Scholar 

  105. K.C. Hass, M.A. Tamor, T.R. Anthony, W.F. Banholzer, Lattice dynamics and Raman spectra of isotopically mixed diamond. Phys. Rev. B45, 7171–7182 (1992)

    Google Scholar 

  106. H.D. Fuchs, C.H. Grein, C. Thomsen et al., Comparison of the phonon spectra \(^{70}\)Ge and natural Ge crystals: Effect of isotopic disorder, ibid, B43, 4835–4841 (1991)

    Google Scholar 

  107. D.T. Wang, A. Gobel, J. Zegenhagen et al., Raman scattering on \(\alpha \)-Sn: dependence on isotopic composition, ibid, B56, 13167–13172 (1997)

    Google Scholar 

  108. S. Tamura, Isotope scattering of dispersive phonons in Ge. Phys. Rev. B27, 858–866 (1983)

    Google Scholar 

  109. S. Tamura, Isotope scattering of large-wave-vector phonons in GaAs and inSb: deformation-dipole and overlap-shell models, ibid, B30, 849–854 (1984)

    Google Scholar 

  110. F. Widulle, J. Serrano, M. Cardona, Disorder—induced phonon self-energy of semiconductors with binary isotopic composition. Phys. Rev. B65, 075206–075210 (2002)

    Google Scholar 

  111. J. Spitzer, P. Etchegoin, W.F. Banholzer et al., Isotopic disorder induced Raman scattering in diamond. Solid State Commun. 88, 509–514 (1993)

    CAS  Google Scholar 

  112. R. Vogelgesand, A.K. Ramdas, T.R. Anthony, Brillouin and Raman scattering in natural and isotopically controlled diamond. Phys. Rev. B54, 3989–3999 (1996)

    Google Scholar 

  113. F. Widulle, T. Ruf, V.I. Ozhogin et al., Isotope effect in elemental semiconductors: A Raman study of silicon. Solid State Commun. 118, 1–22 (2001)

    CAS  Google Scholar 

  114. N. Vast, S. Baroni, Effect of disorder on the Raman spectra of crystals: Theory and ab initio calculations for diamond and germanium. Phys. Rev. B61, 9387–9391 (2000)

    Google Scholar 

  115. N. Vast, S. Baroni, Effect of disorder on the Raman spectra of crystals: Theory and ab initio calculations for diamond and germanium. Comput. Matr. Sci. 17, 395–399 (2000)

    CAS  Google Scholar 

  116. S. Rohmfeld, M. Hundhausen, L. Ley, Isotope-disorder-induced line broadening of phonons in the Raman spectra of SiC. Phys. Rev. Lett. 86, 826–829 (2001)

    CAS  Google Scholar 

  117. V.G. Plekhanov, V.I. Altukhov, Light scattering in LiH crystals with LO phonons emission. J. Raman Spectrosc. 16, 358–365 (1985)

    CAS  Google Scholar 

  118. V.G. Plekhanov, Comparative study of isotope and chemical effects on the exciton states in LiH crystals. Prog. Solid State Chem. 29, 71–177 (2001)

    CAS  Google Scholar 

  119. V.G. Plekhanov, Isotope-induced energy-spectrum renormalization of the Wannier– Mott exciton in LiH crystals. Phys. Rev. B54, 3869–3877 (1996)

    Google Scholar 

  120. R.J. Elliott, I.P. Ipatove (eds.), Optical Properties of Mixed Crystals (North-Holland, Amsterdam, 1988)

    Google Scholar 

  121. C. Parks, A.K. Ramdas, S. Rodriguez et al., Electronic band structure of isotopically pure germanium, Phys. Rev. B49, 14244–14260 (1994)

    Google Scholar 

  122. G. Davies, J. Hartung, V. Ozhogin et al., Effects of isotope disorder on phonons in germanium determined from bound exciton luminescence. Semicond. Sci. Technol. 8, 127–130 (1993)

    CAS  Google Scholar 

  123. S. Permogorov, A. Reznitsky, Effect of disorder on the optical spectra of wide-gap II–VI semiconductor solid solutions. J. Luminescence 52, 201–223 (1992)

    CAS  Google Scholar 

  124. S. Permogorov, A. Klochikhin, A. Reznitsky, Disorder—induced exciton localization in 2D wide—gape semiconductor solid solutions, ibid, 100, 243–257 (2002)

    Google Scholar 

  125. A.L. Efros, M.E. Raikh, Effect of composion disorder on the electronic properties in semiconducting mixed crystals, in [116]. Ch. 5, 133–177 (1988)

    Google Scholar 

  126. I.M. Lifshitz, Selected Works (Science, Moscow, 1987) (in Russian)

    Google Scholar 

  127. V.A. Kanehisa, R.J. Elliott, Effect of disorder on exciton binding energy in semiconductor alloys. Phys. Rev. B35, 2228–2236 (1987)

    Google Scholar 

  128. N.F. Schwabe, R.J. Elliott, Approximation of excitonic absorption in disordered systems using a composition–component–weighted coherent–potential approximation, ibid, B54, 5318–5329 (1996)

    Google Scholar 

  129. H.A. Bethe, E. Salpiter, Quantum Theory of One and Two Electron Atoms (Academic Press, New York, 1957)

    Google Scholar 

  130. R.J. Nelson, N. Holonjak, W. Groves, Free—exciton transitions in the optical absorption spectra of GaAs\(_{1-x}\)P\(_{x}\). Phys. Rev. B13, 5415–5419 (1976)

    Google Scholar 

  131. S.D. Mahanti, C.M. Varma, Effective electron—hole interactions in polar semiconductors, ibid, B6, 2209–2226 (1972)

    Google Scholar 

  132. S.D. Mahanti, Excitons in semiconducting alloys, ibid, B10, 1384–1390 (1974)

    Google Scholar 

  133. J. Hama, N. Kawakami, Pressure induced insulator—metal transiton in solid LiH. Phys. Lett. A126, 348–352 (1988)

    Google Scholar 

  134. V.G. Plekhanov, Experimental manifestation of the effect of disorder on exciton binding energy in mixed crystals, Phys. Rev. B53, 9558–9560 (1996–I)

    Google Scholar 

  135. V.G. Plekhanov, N.V. Plekhanov, Isotope dependence of band-gap energy. Phys. Lett. A313, 231–237 (2003)

    Google Scholar 

  136. H. Rechenberg, Historical Remarks on Zero-Point Energy and the Casimir Effect, in The Casimir Effect 50 Years later, ed. by M. Bordag (World Scientific, Singapore, 1999) p. 10–19

    Google Scholar 

  137. M. Planck, Über die begrundung des gesetz der Schwarzen strahlung. Ann. Phys. 37, 642–656 (1912)

    CAS  Google Scholar 

  138. W. Nernst, F.A. Lindeman, Z. Elektrochem. Angew. Phys. Chem. 17, 817 (1911) (cited in [136])

    Google Scholar 

  139. A. Einstein, O. Stern, Einige argumente fur die annahme einer molekularen agitation beim absoluten null punkt. Ann. Phys. 40, 551 (1913)

    Google Scholar 

  140. H.Y. Fan, Temperature dependence of the energy gap in semiconductors. Phys. Rev. 82, 900–905 (1951)

    CAS  Google Scholar 

  141. S. Zollner, M. Cardona and S. Gopalan, Isotope and temperature shifts of direct and indirect band gaps in diamond-type semiconductors, ibid, B45, 3376–3385 (1992)

    Google Scholar 

  142. G. Baym, Lectures on Quantum Mechanics (Benjamin, New York, 1968), p. 98

    Google Scholar 

  143. K.A. Milton, The Casimir effect: Recent controversis and progress. J. Phys. A: Math. Gen. 37, R209–R277 (2004)

    Google Scholar 

  144. S.K. Lamoreaux, The Casimir force: Background, experiments and applications. Rep. Prog. Phys. 68, 201–236 (2009)

    Google Scholar 

  145. P. Lautenschlager, M. Garriga, L. Vina et al., Temperature dependence of the dielectric function and interband critical points in silicon. Phys. Rev. B36, 4821–4830 (1987)

    Google Scholar 

  146. V.G. Plekhanov, Comparative investigation of isotopic and temperature effects involving excitons in LiH\(_{x}\)D\(_{1-x}\) crystals, Phys. Solid State (St. Petersburg) 35, 1493–1499 (1993)

    Google Scholar 

  147. A.P. Zhernov, Isotope composition dependence of energy bands in semiconductors, Fiz. Tverd. Tela (St. Petersburg) 44, 992–1000 (2002) (in Russian)

    Google Scholar 

  148. P.W. Milonni, The Quantum Vacuum: An Introduction to Quantum Elctrodynamics (Academic Press, New York, 1994)

    Google Scholar 

  149. P.W. Milonni and M.-L. Shih, Zero-point energy in early quantum theory, Am. J. Phys. 59, 684–698 (1991)

    Google Scholar 

  150. T.H. Boyer, The classical vacuum (zero-point energy), Sci. Am. Mag, pp. 70–78, (Aug, 1985)

    Google Scholar 

  151. P. Yam, Exploiting zero-point energy, ibd, December 1997, pp. 82–85

    Google Scholar 

  152. H. Puthoff, Quantum fluctuations of empty space: a new Rosetta stone in physics, www.padrak.com/ine/Name.html

  153. W. Nerst, Über einen versuch von quantentheorietischen Betrachtungen zuruckzukehren. Verhandl. Deut. Phys. Ges. 18, 83–91 (1916)

    Google Scholar 

  154. P.A.M. Dirac, The Principle of Quantum Mechanics (Clarendon Press, Oxford, 1995)

    Google Scholar 

  155. A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic Publ, Dodrech, 1994)

    Google Scholar 

  156. B. Haisch, A. Rueda, Y. Dobyns, Insrtial mass and the quantum vacuum fields. Ann. der Phys. 10, 393–414 (2001)

    CAS  Google Scholar 

  157. T.H. Boyer, Random electrodynamics: The theory of classical electrodynamics with classical electromagnetic zero-point radiation, Phys. Rev. D11, 790–808 (1975)

    Google Scholar 

  158. T.H. Boyer, Random Electrodynamics: The Theory of Classical Electrodynamics with Classical Electromagnetic Zero-Point Radiation, in Foundations of Radiation and Quantum Electrodynamics, ed. by A.O. Barut ( Plenum Press, New York, 1980)

    Google Scholar 

  159. L. de la Peña and A.M. Cetto, The Quantum Dice: An Introduction to Stochastic Electrodynamics (Kluwer, Dodrecht, 1996)

    Google Scholar 

  160. B. Kosyakov, Introduction to the Classical Theory of Particles and Fields (Springer, Heidelberg, 2007)

    Google Scholar 

  161. E. Schrödinger, Über die kroftefreie Bewegung in dr relativoschen Quantemmechanics, Sitz. Preus. Akad. Wiss. Phys. Math. K1 24, 418–428 (1930); 3, 1–10 (1931)

    Google Scholar 

  162. K. Huang, On the zitterbewegung of the Dirac electron. Am. J. Phys. 20, 479–487 (1952)

    Google Scholar 

  163. A. Barut, N. Zanghi, Classical model on the Dirac Electron. Phys. Rev. Lett. 52, 2003–2006 (1984)

    Google Scholar 

  164. H.E. Puthoff, Groung—state of hydrogen as a zero-point-fluctuation-detrmined state. Phys. Rev. D35, 3266–3269 (1987)

    Google Scholar 

  165. D.C. Cole, Yi. Zou, Quantum mechanical ground state og hydrogen obtained from classical electrodynamics, Phys. Lett. A317, 14–20 (2003)

    Google Scholar 

  166. E.W. Davis, V.L. Teofilo, B. Haisch at al., Review of experimental concepts for studying the quantum vacuum field, in Space Technology and Applications International Forum, SPAIF - 2006, ed. by El-Genk, 2006, pp. 1390–1401

    Google Scholar 

  167. V.G. Plekhanov, Manifestation and origin of the isotope effec, ArXiv: phys/0907.2024 (2009), (review)

    Google Scholar 

  168. H.E. Puthhoff, Source of vacuum electromagnetic zero-point energy. Phys. Rev. A40, 4857–4862 (1989)

    Google Scholar 

  169. P.W. Milonni, Semiclassical and quantum electrodynamical approaches in nonrelativistic radiation theory. Phys. Rep. 25, 1–81 (1976)

    Google Scholar 

  170. M. Jammewr, Concepts of Mass in Contemporary Physics and Philosophy, (Harvard University Press, Cambridge, 1961)

    Google Scholar 

  171. E. Mach, Mechanics (Saint-Petersburg, 1909) (in Russian)

    Google Scholar 

  172. H.E. Puthoff, Gravity as a zero-point-fluctuation force. Phys. Rev. A39, 2333–2342 (1989)

    Google Scholar 

  173. A.D. Sakharov, Vacuum quantum fluctuation in curved space and the theory of gravitation, Dokl. Akad, Nauk SSSR. Sov. Phys. Dokl. 12, 1040–1042 (1968)

    Google Scholar 

  174. M. Planck, The Theory of Heat Radiation (Blackinston, London, 1914)

    Google Scholar 

  175. B. Haisch and A. Rueda, The Zero-Point Field and Inertia, in Causality and Locality in Modern Physics, ed. by G. Hunter, S. Jeffers, J.-P. Vieger, (Kluwer Academic Publishers, Dodrecht, 1998) pp. 171–178

    Google Scholar 

  176. A. Rueda, B. Haisch, Gravity and the quantum vacuum inertia hypothesis. Ann. der Phys. 14, 479–498 (2005)

    Google Scholar 

  177. B. Haisch, A. Rueda, H.E. Puthoff, Inertia as a zero-point-field Lorentz force. Phys. Rev. A49, 678–694 (1994)

    Google Scholar 

  178. T.D. Lee, Particle Physics and Introduction to Field Theory (Harwood Academic, London, 1988)

    Google Scholar 

  179. H.E. Puthoff, S.R. Little, M. Ibison, Engineering the zero-point field and polarizable vacuum for interstellar flight. IBIS 55, 137–144 (2002)

    Google Scholar 

  180. C.W. Turtur, Two paradoxes of the existence of electric charge, ArXiv:phys/0710.3253 (2007)

    Google Scholar 

  181. R.L. Forward, Extracting electrical energy from the vacuum by cohesion foliated conductors. Phys. Rev. B30, 1700–1702 (1984)

    Google Scholar 

  182. H.B.G. Casimir, On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793–801 (1948)

    Google Scholar 

  183. P.W. Milonni, R.J. Cook, M.E. Goggin, Radiation pressure from the vacuum: Physical interpretation of the Casimir force. Phys. Rev. A38, 1621–1623 (1988)

    Google Scholar 

  184. D.C. Cole, H.E. Puthoff, Extracting energy and the heat from the vacuum. Phys. Rev. E48, 1562–1565 (1993)

    Google Scholar 

  185. A. Rueda, B. Haisch, D.C. Cole, Vacuum zero-point field pressure instabiity in astrophysical plasmas and the formation of cosmic voids. Astrophys. J. 445, 7–16 (1995)

    Google Scholar 

  186. I.Tu. Sokolov, The Casimir effect is a possible source of cosmic energy. Phys. Lett. A223, 163–166 (1996)

    Google Scholar 

  187. C.E. Carlson, T. Goldman and J. Peres-Mercader, Gamma-ray burst, neutron atar quales, and the Casimir effect, Europhys. Lett. 36, 637–642 (1996)

    Google Scholar 

  188. F.B. Mead, Jr., J. Nachamkin, System for converting electromagnetic radiation energy to electrical energy, US Patent No 5,590.031, issued Dec. 31, 1996

    Google Scholar 

  189. F. Ya. Khalili, Zero-point oscillations, zero-point fluctuations, and fluctuations of zero-point oscillations, Physics-Uspekhi (Moscow) 173, 301–316 (2003) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Plekhanov .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plekhanov, V. (2013). Isotopes in Solids. In: Isotopes in Condensed Matter. Springer Series in Materials Science, vol 162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28723-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28723-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28722-0

  • Online ISBN: 978-3-642-28723-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics