Skip to main content

Sub-Nucleonic Structure and the Modern Picture of Isotopes

  • Chapter
  • First Online:
Isotopes in Condensed Matter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 162))

  • 813 Accesses

Abstract

Investigations of the atomic nucleus, and the fundamental forces that determine nuclear structure as is well known offer fascinating insights into the nature of the physical world. We all known well that the history of the nuclear physics dates from the latter years of the nineteenth century when Henry Becqeurel in 1896 discovered the radioactivity. He was working with compounds containing the element uranium. Becqeurel found that photographic plates covered to keep out light became fogged, or partially exposed, when these uranium compounds were anywhere near the plates. Two years after Becquerel’s discovery, Pierre and Marie Curie in France and Rutherford in England succeeded in separating a naturally occurring radioactive element, radium (Z = 88), from the ore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    QCD is the modern theory of the strong interaction. QCD, the theory of quarks, gluons and their interactions, is a self-contained part of the Standard Model (see below) of elementary particles. Historically its route is in nuclear physics and the description of ordinary matter—understanding what protons and neutrons are (and their structure) and how they interact. Nowadays QCD is used to describe most of what goes at high-energy accelerators.

  2. 2.

    With the aim of the ground of nature of isotope effect, a detailed analysis of the neutron and proton structure and their mutual transformation in the weak interaction process was conducted. Note that the main characteristics of isotope effect—the mass of free particles (proton and neutron)—does not conserve in the weak interaction process. This contradiction is removed although partly if we take into account the modern presentation [4244] that the mass of proton (neutron) is created from quark condensate (not from constituent quarks [15, 44]) which is the coherent superposition of the states with different chirality. Thus the elucidation of the reason of origin of the nucleon mass is taken down to elucidation of the reason to break down the chiral symmetry in Quantum Chromodynamics [4556].

  3. 3.

    Nuclei with the same N and different Z are called isotones, and nuclides with the same mass number A are known as isobars. In a symbolic representation of a nuclear specie or nuclide, it is usual to omit the N and Z subscripts and include only the mass number as a superscript, since A\(\,=\,\)N\(+\)Z and the symbol X represents the chemical elements.

  4. 4.

    If the two-body potential has an average strength of 20 MeV, then the three-body one would have a strength of about 1 MeV. We should add that all models have a one-pion exchange character at long range, which gives rise to a spin–spin central potential and a tensor term ( for details see [60, 81]).

  5. 5.

    In 1932 Heisenberg suggested [90] on the basis of the approximate of the proton and neutron mass (see also Table 2.2) that these particles might be considered as two different charge states of a single entity, the nucleon, formally equivalent to the up and down states of a spin 1/2 particle. To exploit this hypothesis the nucleon wave function in addition to a space and a spin component also has an isotopic spin (isospin) component (see, also e.g. [7]).

  6. 6.

    As is well known, the Standard Model [4852, 5456, 81, 97, 100] is a unified gauge theory of the strong, weak and electromagnetic interactions, the content of which is summarised by the group structure SU(3)\(\times \) SU(2)\(\times \) U(1), where SU(3) refers to the theory of strong interactions,QCD, and latter two factors [SU(2)\(\times \) U(1)] describe the theory of electroweak interactions. Although the theory remains incomplete, its development represents a triumph for modern physics (for details see [100] and below).

  7. 7.

    The first question that occurs is whether the quarks actually exist inside the hadrons or whether they are merely a convenient mathematical ingredient leading to the geometrical symmetry [7]. A substantial clue in this direction is obtained in deep inelastic scattering from nucleons [1113]. The nucleon appears to be made up of to regions in the asymptotic-free regime [100102] and the outer region of the meson cloud where pions and other heavy mesons can exist (see, also [103108]). A number of early results on the internal proton structure became accessible through highly inelastic electron scattering carried out at the Stanford Linear Accelerator centre (SLAC). Later work of Kendell et al. [1113] helped to identify these structures with quarks inside the proton (for details see also [109]).

  8. 8.

    As we know, nonrelativistic quark model use constituent quark masses, which are of order 350 MeV for u- and d-quarks. Constituent quark masses model the effect of dynamical chiral symmetry breaking are not related to the quark mass parameters \({m}_{q}\) of the QCD Lagrangian.

References

  1. M. Gell-Mann, The Quark and the Jaguar (W.H. Freeman and Co., Adventures in the Simple and the Complex) (New York, 1997)

    Google Scholar 

  2. A.E.S. Green, Nuclear physics (McCraw-Hill, New York, 1955)

    Google Scholar 

  3. I. Kaplan, Nuclear Physics, 2nd ed. (Addison-Wesley, New York, 2002)

    Google Scholar 

  4. W.E. Burcham, 1973, Nuclear Physics. An Introduction. 2nd ed. (New York, Longman)

    Google Scholar 

  5. K.S. Krane, Introductory Nuclear Physics (Wiley and Sons, New York-Chichester, 1988)

    Google Scholar 

  6. J. Lilley, Nuclear Physics (Wiley and Sons, Chichester, 2001)

    Google Scholar 

  7. S.M. Wong, Introductory Nuclear Physics (Wiley and Sons, Chichester, 1998)

    Google Scholar 

  8. P.E. Hodgston, E. Gadioli, E. Gadioli-Erba, Introductory Nuclear Physics (Oxford University Press, Oxford-New York, 2000)

    Google Scholar 

  9. K. Heyde, Basic Ideas and Concepts in Nuclear Physics (Bristol-Philadelphia, IOP, 2004)

    Google Scholar 

  10. Ju.M. Schirokov and N.P. Judin, Nuclear Physics (Moscow, Science, 1980) (in Russian)

    Google Scholar 

  11. R.E. Taylor, Deep inelastic scattering: the early years. Rev. Mod. Phys. 63, 573–585 (1991)

    CAS  Google Scholar 

  12. H.W. Kendall, Deep inelastic scattering: experiments on the proton and the observation of scattering, ibid, 63, 597–614 (1991).

    Google Scholar 

  13. J.I. Friedman, Deep inelastic scattering: comparison with quark model, ibid, 63, 615–627 (1991).

    Google Scholar 

  14. F.A. Wilczek, The cosmic assymmetry between matter and antimatter, Uspekhi Fiz. Nauk 175, 149–165 (2005) (in Russian).

    Google Scholar 

  15. F. Halzen, D. Martin, Quarks and Leptons (Wiley, New York, 1984)

    Google Scholar 

  16. A.P. Striganov and Ju.P. Donzov, Isotope effect in atomic spectra, Usp. Fiz. Nauk 55, 315–330 (1955) (in Russian).

    Google Scholar 

  17. S.E. Frish, Optical Spectra of Atoms ( Moscow-Leningrad, Fizmatgiz, 1963) (in Russian)

    Google Scholar 

  18. I.I. Sobel’man, Itroduction in Theory of Atomic Spectra, 2nd edn. (Moscow, Science, 1977) (in Russian)

    Google Scholar 

  19. W.H. King, Isotope Shift in Atomic Spectra (Plenum Press, New York, 1984)

    Google Scholar 

  20. M.A. Eliashevich, Atomic and Molecular Spectroscopy (Moscow, Fizmatgiz, 1962) (in Russian)

    Google Scholar 

  21. G. Herzberg, Molecular Spectra and Molecular Structure (D. van Nostrand, New York, 1951)

    Google Scholar 

  22. E.B. Wilson Jr, J.C. Decius, P.C. Gross, Molecular Vibrations (McGraw-Hill, The Theory of Infrared and Raman Vibrational Spectra (New York, 1955)

    Google Scholar 

  23. V.G. Plekhanov, Elementary excitation in isotope-mixed crystals. Phys. Reports 410, 1–235 (2005)

    CAS  Google Scholar 

  24. M. Cardona, M.L.W. Thewalt, Isotope effect on optical spectra of semiconductors. Rev. Mod. Phys. 77, 1173–1224 (2005)

    CAS  Google Scholar 

  25. V.G. Plekhanov, Fundamentals and applications of isotope effect in solids. Progr. Mat. Science 51, 287–426 (2006)

    CAS  Google Scholar 

  26. V.G. Plekhanov, Giant Isotope Effect in Solids (Stefan-University Press, La Jola, 2004). (USA)

    Google Scholar 

  27. V.G. Plekhanov, Applications of isotope effect in solids. J. Mater. Science 38, 3341–3429 (2003)

    CAS  Google Scholar 

  28. G. Schatz, A. Weidinger, A. Gardener, Nuclear Condensed Matter Physics, 2nd edn. (Wiley, New York, 1996)

    Google Scholar 

  29. V.G. Plekhanov, Applications of the Isotopic Effect in Solids (Springer, Berlin, 2004)

    Google Scholar 

  30. D. Forkel-Wirth, Exploring solid state physics properties with radioactive isotopes, Rep. Progr. Phys. 62, 527–597 (1999).

    Google Scholar 

  31. M. Deicher, Radioactive ion beams: applications to semiconductor physics (Analysis in Materials Science, Freiberg, June, 2005), pp. 15–17

    Google Scholar 

  32. S.I. Adelstein, F.Y. Manning (eds.), Isotopes for Medicine and Life Science (National Academy Press, Washington, 1995)

    Google Scholar 

  33. L.L. Gol’din, M.F. Lomanov, V.B. Savchenko et al., Uspekhi-Phys (Moscow) 110, 77–100 (1973) (in Russian).

    Google Scholar 

  34. U. Amaldi, G. Kraft, Radiotherapy with beams of carbon ions. Rep. Progr. Phys. 68, 1861–1883 (2005)

    CAS  Google Scholar 

  35. M.M. Ter-Pogossian, in Positron Emission Tomography, ed. by I. Reivich, A. Alovi (New York, Alan R. Press, 1985)

    Google Scholar 

  36. V.Ju. Baranov, (Ed.) Isotopes, Vol. 1 and 2 (Moscow, Fizmatlit, 2005) (in Russian)

    Google Scholar 

  37. O. Manuel, Origins of Elements in the Solar Systems (Kluwer Academic Press, New York, 2001)

    Google Scholar 

  38. E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–652 (1957)

    Google Scholar 

  39. G. Wallerstein, I. Jhen, Jr, P. Parker et al., Synthesis of the elements in stars: forty years in progress, ibid, 69, 995–1084 (1997).

    Google Scholar 

  40. S. Esposito, Primordial Nucleosynthesis: Accurate Prediction for Light Element Abundances, ArXiv:astro-ph/ 990441

    Google Scholar 

  41. V.G. Plekhanov, Manifestation and Origin of the Isotope Effect, ArXiv: gen. phys/0907.2024

    Google Scholar 

  42. E.H. Simmons, Top Physics, ArXiv, hep-ph/0011244

    Google Scholar 

  43. V.G. Plekhanov, Isotope Low - Dimensional Structures (Springer, Heidelberg - Berlin, 2012)

    Google Scholar 

  44. B.L. Ioffe, The origin of mass, Usp. Fiz. Nauk (Moscow) 176, 1103–1104 (2006) (in Russian)

    Google Scholar 

  45. A.D. Dolgov and Ja.B. Zel’dovich, Cosmology and elementary particles, Rev. Mod. Phys. 53, 1–41 (1981)

    Google Scholar 

  46. A.D. Linde, The inflated Universe, Usp. Fiz. Nauk 144, 177–214 (1984) (in Russian)

    Google Scholar 

  47. B.L. Ioffe, Chiral effecrive theory of strong interactions, Usp. Fiz. Nauk 171, 1273–1290 (2001) (in Russian)

    Google Scholar 

  48. P. Langacker, Structure of the Standard Model, ArXiv:hep-ph. 0304186

    Google Scholar 

  49. S. F. Novaes, Standart Model: An Introduction, ArXiv:hep-ph/00012839

    Google Scholar 

  50. C.D. Froggatt, H.B. Nielsen, Trying to Understand the Standard Model Parameters, ArXiv: hep-ph/0308144

    Google Scholar 

  51. J.F. Donoghue, E. Golowich, B.R. Holstein, Dynamics of Standard Model (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  52. C. Burgess, G. Moore, Standard Model—A Primer (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  53. I.I. Royzen, E.L. Feinberg, E.L. Chernavskaya, Color deconfinment and subhadronic matter: phase states and the role of constituent quarks, Usp. Fiz. Nauk 174, 473–503 (2004) (in Russian)

    Google Scholar 

  54. W. Marciano, H. Pagels, Quantum chromodynamics. Phys. Reports 36, 137–276 (1978)

    Google Scholar 

  55. D.W. Lee, Chiral Dynamics (Gordon and Breach, New York, 1972)

    Google Scholar 

  56. S. Coleman, Aspects of Symmetry (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  57. http://www.lbl.gov./abc/wallchart

  58. F. Soddy, Intra—atomic charge. Nature (London) 92, 399–400 (1913)

    Google Scholar 

  59. F. Soddy, The structure of the atom, Nature (London) 92, 452–452 (1913)

    Google Scholar 

  60. H. Frauenfelder, E.M. Henley, Subatomic Physics (Prentice Hall, New York, 1991)

    Google Scholar 

  61. J.J. Kelly, Nucleon charge and magnerization densities from Sachs form factors. Phys. Rev. C66, 065203–065206 (2002)

    Google Scholar 

  62. G.A. Miller, A.K. Opper, E.J. Stephenson, Charge symmetry breaking and QCD, ArXiv: nucl.- ex/0602021

    Google Scholar 

  63. G.A. Miller, Charge densities of the neutron and proton. Phys. Rev. Lett. 99, 112001–112004 (2007)

    Google Scholar 

  64. G.A. Miller, J. Arringfton, The neutron negative central charge density: an inclusive–exclusive connection, ArXiv: nucl-th/0903.1617.

    Google Scholar 

  65. C.M. Lederer, V.S. Shirley, Table of Isotopes (Wiley, New York, 1978)

    Google Scholar 

  66. F.W. Aston, Isotopes and atomic weights. Nature 105, 617–619 (1921)

    Google Scholar 

  67. F.W. Aston, Mass-Spectra and Isotopes, (Science, Moscow, 1948) (in Russian)

    Google Scholar 

  68. R.N. Cahn, G.G. Goldhater, The Experimental Foundations of Particle Physics (Camdridge University Press, Camdridge, 1989)

    Google Scholar 

  69. R. Shurtleft, E. Derringh, Am. J. Phys. 47, 552 (1989), cited in [68]

    Google Scholar 

  70. R.C. Barrett, D.F. Jackson, Nuclear Sizes and Structure (Clarendon Press, Oxford, 1977)

    Google Scholar 

  71. M. Waraquier, J. Morean, K. Heyde et al., Rearrangement effects in shell-model calculations using density—dependent interactions. Phys. Reports 148, 249–291 (1987)

    Google Scholar 

  72. W.F. Hornyack, Nuclear Structurs (Academic, New York, 1975)

    Google Scholar 

  73. B.M. Brink, Nuclear Forces (Pergamon, New York, 1965)

    Google Scholar 

  74. J. Carlson, R. Schiavilla, Structure and dynamics of few—nucleon systems. Rev. Mod. Phys. 70, 743–841 (1998)

    CAS  Google Scholar 

  75. C. Davies, S. Collins, Physics (World, August, 2000), pp. 35–40

    Google Scholar 

  76. L.I. Schiff, Scattering of neutrons by deuterons. Phys. Rev. 52, 149–154 (1937)

    CAS  Google Scholar 

  77. S.S. Share, J.R. Stehn, Effect of long range forces on neutron–proton scattering. Phys. Rev. 52, 48–52 (1937)

    CAS  Google Scholar 

  78. J. Schwinger, E. Teller, The scattering of neutrons by ortho–parahydrogen, Phys. Rev. 52, 286–295 (1937)

    Google Scholar 

  79. G.L. Greene, E.G. Kessler, New determination binding energy and the neutron mass. Phys. Rev. Lett. 56, 819–822 (1986)

    CAS  Google Scholar 

  80. S. Gartenhaus, Two-nucleon potential from the cut-off Yukawa theory. Phys. Rev. 100, 900–905 (1955)

    Google Scholar 

  81. J.D. Walecka, Theoretical Nuclear and Subnuclear Physics (Oxford University Press Inc, New York, 1995)

    Google Scholar 

  82. D.J. Griffiths, Introduction to Elementary Partcles (Wiley, New York, 1987)

    Google Scholar 

  83. R.K. Adair, Neutron cross-sections of the elements. Rev. Mod. Phys. 22, 249–298 (1950)

    CAS  Google Scholar 

  84. R. Wilson, The Nucleon–Nucleon Interaction (Wiley, New York, 1963)

    Google Scholar 

  85. E.M. Henley, J.P. Schiffer, Nuclear Physics, ArXiv: nucl-th/9807041

    Google Scholar 

  86. E. Segre, Nuclei and Particles (Reading MA, Benjamin, New York, 1982)

    Google Scholar 

  87. R.A. Arndt, L.D. Roper, Nucleon–nucleon partiale-wave analysis to 1100 MeV. Phys. Rev. D35, 128–144 (1987)

    Google Scholar 

  88. R. Vinh Mau, in Mesons in Nuclei, ed. by M. Rho, D.H. Wilkinson, (North-Holland, Amsterdam, 1979)

    Google Scholar 

  89. R. Machleidt, K. Holinde, Ch. Elster, Phys. Rev. 149, 1 (1987), cited in [88]

    Google Scholar 

  90. W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zs. Physik 77, 172–198 (1932)

    Google Scholar 

  91. P. Renton, Electroweak Interactions: An Introduction to the Physics of Quarks and Leptons (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  92. B.R. Holstein, Weak Interactions in Nuclei (Princeton University Press, Princeton, 1989)

    Google Scholar 

  93. E.A. Paschoes, Electroweak Theory (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  94. S. Edelman, Particle physics summary. Phys. Lett. B 592, 1–101 (2004)

    Google Scholar 

  95. D.P. Roy, Basic constituents of matter and their interactions—A progress report: ArXiv: hep- ph/9912523

    Google Scholar 

  96. F. Wilczek, The Universe is a strange place, ArXiv: astro-ph/0401347

    Google Scholar 

  97. I.J.R. Aitchison, A.J.G. Hey, Gauge Theories in Particle Physics: A Practical Introduction (Adam Hilger, Bristol, 1990)

    Google Scholar 

  98. A. Volcarce, A. Fernandez, P. Gonzalez, Quark—model study of few—baryon systems. Rep. Progr. Phys. 68, 965–1041 (2005)

    Google Scholar 

  99. W. Wagner, The quarks physics in hadron collisions, Rep. Progr. Phys. 68, 2409–2494 (2005)

    Google Scholar 

  100. D.J. Gross, The discovery of asymptotic freedom and the emergance of QCD. Rev. Mod. Phys. 77, 837–851 (2005)

    CAS  Google Scholar 

  101. D. Politzer, The dilemma of attribution, ibid, 77, 851–857 (2005)

    Google Scholar 

  102. F. Wilczek, Asymptotic freedom: from paradox to paradigm, ibid, 77, 857–871 (2005)

    Google Scholar 

  103. S.L. Glashow, Partial-symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1995)

    Google Scholar 

  104. S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264–1267 (1967)

    Google Scholar 

  105. A. Salam, Elementary Particle Theory, in Proceedings of the Eigth Nobel Symposium, p. 367, 1968, ed. by N. Svartholm

    Google Scholar 

  106. S. Weinberg, The Making of the Standard Model, ArXiv: hep-ph /0401010

    Google Scholar 

  107. A. Abbas, Quarks and neutrons halo nuclei, nuclear clusters and nuclear molecules. Mod. Phys. Lett. A16, 755–761 (2001)

    Google Scholar 

  108. A. Abbas, Structure of A \(=\) 6 nuclei \(^{6}\)He, \(^{6}\)Li and \(^{6}\)Be, Mod. Phys. Lett. A19, 2365–2370 (2004)

    Google Scholar 

  109. F.I. Yndurain, The Theory of Quark and Gluon Interactions (Springer, Berlin, 1999)

    Google Scholar 

  110. H. Satz, The transition from hadron matter to quark - gluon plasma. Ann. Rev. Nucl. Sci. 35, 245 (1985)

    CAS  Google Scholar 

  111. T. Celik, J. Engles, H. Satz, Finite temperature lattice QCD with Wilson fermions. Nucl. Phys. B256, 670–686 (1985)

    CAS  Google Scholar 

  112. S. Weinberg, The First Three Minutes (Basic Books, New York, 1993)

    Google Scholar 

  113. H.E. Suess, H.C. Urey, Abundances of the elements. Rev. Mod. Phys. 28, 53–74 (1956)

    CAS  Google Scholar 

  114. G. Gamow, One, Two, Three Infinity (Viking Press, New York, 1947)

    Google Scholar 

  115. G. Gamow, Expanding Universe and the origin of elements, Phys. Rev. 70, 572–573 (1946)

    Google Scholar 

  116. G. Gamow, The origin of elements and the separation Galaxes, Phys. Rev. 74, 505–506 (1948)

    Google Scholar 

  117. R.A. Alpher, H.A. Bethe, G. Gamow, The origin of chemical elements. Phys. Rev. 73, 803–804 (1948)

    CAS  Google Scholar 

  118. R.A. Alpher, R.C. Herman, Theory of the origin of relative abundance. Rev. Mod. Phys. 22, 153–212 (1950)

    CAS  Google Scholar 

  119. Refelections on early work on “big-bang" cosmology, Phys. Today 41, (No 8) 24–33 (1988)

    Google Scholar 

  120. C. Hayashi, Prog. Theor. Phys. 5, 224 (1950), cited in [101]

    Google Scholar 

  121. A.A. Penzias, R.W. Wilson, A measurements of excess antenna temperature at 4080 ms/c. Astrophys. J. 142, 419–421 (1965)

    Google Scholar 

  122. A.A. Penzias, The Origin of the Elements, Nobel Lecture, December 8, 1978

    Google Scholar 

  123. J.C. Mather, Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument. Astrophys. J. 420, 439–444 (1994)

    Google Scholar 

  124. F. Hoyle, R. Taylor, The mystery of the cosmic abundance. Nature 203, 1108–1109 (1964)

    Google Scholar 

  125. D.N. Schramm, Primordial Nuclei and Their Galactic Evolution, ed. by N. Prantzos, M. Tosi, R. von Steiger (Kluwer, Dodrecht, 1998) p. 3

    Google Scholar 

  126. M. Arnould, K. Takahashi, Nuclear astrophysics. Rep. Prog. Phys. 62, 395–464 (1999)

    CAS  Google Scholar 

  127. C.F. von Weizsacker, Zs. phys. 39, 633 (1938) cited in [114–116]

    Google Scholar 

  128. H.A. Bethe, Energy production in stars. Phys. Rev. 55, 434–456 (1939)

    CAS  Google Scholar 

  129. T.L. Wilson, Isotopes in the interstellar medium and circumstellar envelopes. Rep. Prog. Phys. 62, 143–185 (1999)

    CAS  Google Scholar 

  130. K. Langanke and M. Wiescher, Nuclear reaction and stellar processes, ibid 64, 1657–1691 (2001)

    Google Scholar 

  131. R.F. Frosch, R. Hofstadter, J.R. McCarthy et al., Electron scattering studies of calcium and titanium isotopes. Phys. Rev. 174, 1380–1389 (1968)

    CAS  Google Scholar 

  132. K. Heilig, A. Steudel, Changes in mean square nuclear charge radii from optical isotope shift. At. Data Nucl. Data Tables 14, 613 (1974)

    CAS  Google Scholar 

  133. H.W. Brandt, K. Heilig, A. Steudel, Optical isotope shift measurements of \(^{40, 42, 43, 44, 48}\)Ca by use of enriched isotopes in atomic beam. Phys. Lett. A64, 29–30 (1977)

    Google Scholar 

  134. F. Aufmuth, K. Heilig, A. Steudel, Changes in mean square nuclear charge radii from optical isotope shift. At. Data Nucl. Data Tables 37, 455–490 (1987)

    CAS  Google Scholar 

  135. K. Blaum, High accuracy mass spectrometry with stored ions. Phys. Reports 425, 1–783 (2006)

    CAS  Google Scholar 

  136. K. Blaum, W. Geithnar, J. Lassen. Nuclear moments and charge radii of argon isotopes between the neutron—shell closures N \(=\) 20 and N \(=\) 28, Nucl. Physics 799, 30–45 (2008)

    Google Scholar 

  137. M. Glaser, M. Borys, Precision mass measurements. Rep. Prog. Phys. 72, 126101–126131 (2009)

    Google Scholar 

  138. A. Kelic, K.-H. Schmidt, T. Enqvist, Isotopic and velocity distributions of \(^{83}\)Bi produced in charge-pickup reactions of \(^{82}\)Pb \(_{208}\) at 1 GeV. Phys. Rev. C70, 064608–064612 (2004)

    Google Scholar 

  139. E.V. Shpol’sky, Atomic Physics, Part One. (Fiz-Mat Lit, Moscow, 1974) (in Russian)

    Google Scholar 

  140. E.B. Shera, E.T. Ritter, R.B. Perkins, Systematics of nuclear charge distributions in Fe, Co, Ni, Cu, and Zn fom muonic X-ray measurements. Phys. Rev. C14, 731–747 (1976)

    Google Scholar 

  141. P.L. Lee, F. Boehm, A.A. Hahn, Variations of nuclear charge radii in mercury isotopes with A \(=\) 198, 199, 200, 201, 202, and 204 from X-ray isotope shifts. Phys. Rev. C17, 1859–1861 (1978)

    Google Scholar 

  142. W. Bertolozii, J. Friar, J. Heisenberg, Contributions of neutrons to elastic electron scattering from nuclei. Phys. Lett. B41, 408–414 (1972)

    Google Scholar 

  143. The prehistory of quark masses is reviewed in J. Grasser, H. Leutwyller, Quark masses, Phys. Rep. 87, 77–169 (1982)

    Google Scholar 

  144. H. Leutwyller, Masses of the light quarks, ArXiv: hep-ph/9405330

    Google Scholar 

  145. H. Leutwyller, ArXiv: hep-ph/9602255

    Google Scholar 

  146. H. Leutwyller, Insights and puzzles in light quark physics, ArXiv:hep-ph/ 07063138

    Google Scholar 

  147. C.D. Froggatt, The origin of mass. Surveys High Energy Phys. 18, 77–99 (2003)

    Google Scholar 

  148. C.D. Froggatt, The Problem of mass, ArXiv: hep-ph/0312220

    Google Scholar 

  149. S. Narison, in QCD as a Theory of Hadrons: from Partons to Confinment (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  150. M. Procura, B.U. Nusch, W. Weise, Nucleon mass: from lattice QCD to the chiral limit. Phys. Rev. D73, 114510–16 (2006)

    Google Scholar 

  151. B. Musch, Hadron masses, ArXiv: hep-ph/0602029

    Google Scholar 

  152. S.R. Beane, K. Orginos, M.J. Savage, Strong—isospin violation in the neutron–proton mass difference from fully—dynamical lattice QCD and PQQCD. Nucl. Phys. B768, 38–50 (2007)

    CAS  Google Scholar 

  153. B.L. Ioffe, Nucleon Spin Structure: Sum Rules, Arxiv:hep-ph/9511401

    Google Scholar 

  154. S. Scherer, M.R. Schindler, Chiral Perturbation Theory Primer, ArXiv:hep-ph/0505265

    Google Scholar 

  155. G. Ecker, Chiral Perturbation Theory, ArXiv:hep-ph/9501357

    Google Scholar 

  156. A. Pich, Chiral Perturbation Theory, ArXiv:hep-ph/9502366

    Google Scholar 

  157. S.R. Bean, P.F. Bedaque, W.C. Haxton, in “At the Frontier of Particle Handbook of QCD", ed. by M. Shifman (World Scientific, Singapoure, 2001), pp. 1--140

    Google Scholar 

  158. W. Weise, Yukawa’s Pion, Low-Energy QCD and Nuclear Chiral Dynamics, ArXiv: nucl-th/0704.1992

    Google Scholar 

  159. J. Bijens, Chiral Perturbation Theory Beyon One Loop, ArXiv: hep-ph/0604043

    Google Scholar 

  160. J. Bijens, Progr. Part. Nucl. Phys. 58, 521 (2007)

    Google Scholar 

  161. B.L. Ioffe, QCD at low energies. Progr. Part. Nucl. Phys. 56, 232–277 (2006)

    CAS  Google Scholar 

  162. M. Gell-Mann, R.J. Oakes, B. Renner, Behavior of current divergences under SU\(_{3}\) X SU\(_{3}\) Phys. Rev. 175, 2195–2199 (1968)

    Google Scholar 

  163. A. Pich, J. Prades, Tau-decay determination of the strange quark mass. Nucl. Phys. Proc. Suppl. 86, 236–241 (2000)

    CAS  Google Scholar 

  164. B.L. Ioffe, Calculation of baryon masses in quantum chromodynamics. Nucl. Phys. B188, 317–341 (1981)

    CAS  Google Scholar 

  165. E. Epelbaum, U.-G. Meissner, W. Glöckle, Nucl. Phys. A714, 535 (2003)

    CAS  Google Scholar 

  166. U.-G. Meissner, Quark mass dependence of baryon properties, ArXiv: hep-ph/0509029

    Google Scholar 

  167. Müller B., 2007, From Quark-Gluon plasma to the perfect liquid, ArXiv: nucl-th/0710.3366

    Google Scholar 

  168. W. Weise, Overview and perspectives in nuclear physics, ArXiv: nucl-th/0801.1619

    Google Scholar 

  169. G. Altarelli, States of the Standard model and beyond. Nucl. Instr. and Methods A518, 1–8 (2004)

    Google Scholar 

  170. M. Pospelov, A. Ritz, Electric dipole moment as probes of new physics, ArXiv: hep-ph/0504231

    Google Scholar 

  171. M. Pospelov, A. Ritz, Annal. Phys. (NY) 318, 119 (2005), cited in [170]

    Google Scholar 

  172. I.B. Khriplovich, S.K. Lamoreaux, CP Violation Without Strangeness: Electric Dipole Moments of Particles, Atoms and Molecules (Springer, Berlin, 1997)

    Google Scholar 

  173. A. Djouadi, The dichotomy of electroweak symmetry breaking: The Higgs boson and Standard model, Phys. Rep. 457, 1–216 (2008)

    Google Scholar 

  174. M.J. Ramsey-Musolf, S. Su, Low-energy precision tests of supersymmetry, Phys. Rep., 456, 1–137 (2008)

    Google Scholar 

  175. V.G. Plekhanov, The Enigma of the mass, ArXiv:gen.phys/0906.4408

    Google Scholar 

  176. C.S. Weinberg, The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)

    CAS  Google Scholar 

  177. C.S. Weinberg, The Cosmological constant problems, ArXiv:astro-ph/0005265

    Google Scholar 

  178. M. Tegmark, M.J. Rees, F. Wilczek, Dimensionless constants cosmology and other dark matters, ArXiv:astro-ph/0511774

    Google Scholar 

  179. A.D. Dolgov, Cosmology and new physics, ArXiv:hep-ph/0606230

    Google Scholar 

  180. T. Padmanabhan, Cosmological constant the weight of the vacuum. Phys. Rep. 380, 235–320 (2003)

    Google Scholar 

  181. T. Padmanabhan, Dark energy: mystery of the millenium, ArXiv:astro-ph/0603114

    Google Scholar 

  182. G. Fuller, A. Hime, M. Ramsey-Musolf, Dark matter in, nuclear physics, ArXiv:nucl-ex/0702031

    Google Scholar 

  183. K.A. Milton, The Casimir effect: recent controversis and progress. J. Phys. A: Math. Gen. 37, R209–R277 (2004)

    Google Scholar 

  184. S.K. Lamoreaux, The Casimir force: background, experiments and applications. Rep. Prog. Phys. 68, 201–236 (2005)

    Google Scholar 

  185. S.K. Lamoreaux, The Casimir Force: Background, Experiments and Applications. Rep. Prog. Phys. 68, 201–236 (2005)

    Google Scholar 

  186. M. Levin, X.-G. Wen, Photons and electrons as emergent phenomena. Rev. Mod. Phys. 77, 871–897 (2005)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plekhanov, V. (2013). Sub-Nucleonic Structure and the Modern Picture of Isotopes. In: Isotopes in Condensed Matter. Springer Series in Materials Science, vol 162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28723-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28723-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28722-0

  • Online ISBN: 978-3-642-28723-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics