Deep Brain Stimulation as a Therapy for Alcohol Addiction

  • Thomas F. MünteEmail author
  • Hans-Jochen Heinze
  • Veerle Visser-Vandewalle
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 13)


Deep brain stimulation (DBS) has been firmly established as a therapy for movement disorders. Recently, evidence from case reports and small case series also suggests DBS to be effective in psychiatric disorders including addiction. Here we review the rationale of DBS in addiction and the selection of possible targets. We then consider evidence from animal models as well as human case studies. We conclude that DBS in particular of the nucleus accumbens (NAcc) represents a promising treatment option in addiction which deserves further investigation.


Deep brain stimulation Nucleus accumbens Alcohol addiction Incentive salience Reward processing 



Deep brain stimulation


Local field potentials


Event-related potentials


Nucleus accumbens


Substantia nigra pars compacta


Ventral tegmental area



TFM and HJH are supported by the DFG and BMBF.


  1. Anderson D, Ahmed A (2003) Treatment of patients with intractable obsessive–compulsive disorder with anterior capsular stimulation: case report. J Neurosurg 98:1104–1108PubMedCrossRefGoogle Scholar
  2. Balasubramaniam V, Kanaka TS, Ramanujam PB (1973) Stereotaxic cingulumotomy for drug addiction. Neurol India 21:63–66PubMedGoogle Scholar
  3. Ballantine J, Bouckoms AJ, Thomas EK, Giriunas IE (1987) Treatment of psychiatric illness by stereotactic cingulotomy. Biol Psychiatry 22:807–819PubMedCrossRefGoogle Scholar
  4. Bell RL, Rodd ZA, Lumeng L, Murphy JM, McBride WJ (2006) The alcohol-preferring P rat and animal models of excessive alcohol drinking. Addict Biol 11:270–288PubMedCrossRefGoogle Scholar
  5. Berridge KC, Robinson TE (2003) Parsing reward. Trends Neurosci 26:507–513PubMedCrossRefGoogle Scholar
  6. Beurrier C, Bioulac B, Audin J, Hammond C (2001) High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85:1351–1356PubMedGoogle Scholar
  7. Bewernick BH, Hurlemann R, Matusch A, Kayser S, Grubert C, Hadrysiewicz B, Axmacher N, Lemke M, Cooper-Mahkorn D, Cohen MX, Brockmann H, Lenartz D, Sturm V, Schlaepfer TE (2010) Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry 67:110–116PubMedCrossRefGoogle Scholar
  8. Braus DF, Wrase J, Grusser S, Hermann D, Ruf M, Flor H, Mann K, Heinz A (2001) Alcohol-associated stimuli activate the ventral striatum in abstinent alcoholics. J Neural Transm 108:887–894PubMedCrossRefGoogle Scholar
  9. Bronstein JM et al (2011) Deep brain stimulation for Parkinson disease an expert consensus and review of key issues. Arch of Neurol 68:165–171CrossRefGoogle Scholar
  10. Carter A, Hall W (2011) Proposals to trial deep brain stimulation to treat addiction are premature. Addiction 106:235–237PubMedCrossRefGoogle Scholar
  11. Christmas D, Matthews K, Eljamel MS, Persaud R (2004) Neurosurgery for mental disorder [3] (multiple letters). Br J Psychiatry 185:173–174PubMedCrossRefGoogle Scholar
  12. Cohen RA, Kaplan RF, Moser DJ, Jenkins MA, Wilkinson H (1999) Impairments of attention after cingulotomy. Neurology 53:819–824PubMedCrossRefGoogle Scholar
  13. Cohen MX, Axmacher N, Lenartz D, Elger CE, Sturm V, Schlaepfer TE (2009a) Good vibrations: cross-frequency coupling in the human nucleus accumbens during reward processing. J Cogn Neurosci 21:875–889CrossRefGoogle Scholar
  14. Cohen MX, Axmacher N, Lenartz D, Elger CE, Sturm V, Schlaepfer TE (2009b) Neuroelectric signatures of reward learning and decision-making in the human nucleus accumbens. Neuropsychopharmacology 34:1649–1658CrossRefGoogle Scholar
  15. Cohen MX, Axmacher N, Lenartz D, Elger CE, Sturm V, Schlaepfer TE (2009c) Nuclei accumbens phase synchrony predicts decision-making reversals following negative feedback. J Neurosci 29:7591–7598CrossRefGoogle Scholar
  16. Cohen MX, Bour L, Mantione M, Figee M, Vink M, Tijssen MA, Rootselaar AF, Munckhof P, Richard SP, Denys D (2012) Top-down-directed synchrony from medial frontal cortex to nucleus accumbens during reward anticipation. Hum Brain Mapp 33:246–252PubMedCrossRefGoogle Scholar
  17. Denys D, Mantione M, Figee M, Van Den Munckhof P, Koerselman F, Westenberg H, Bosch A, Schuurman R (2010) Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch Gen Psychiatry 67:1061–1068PubMedCrossRefGoogle Scholar
  18. Dettling M, Heinz A, Dufeu P, Rommelspacher H, Graf KJ, Schmidt LG (1995) Dopaminergic responsivity in alcoholism: trait, state, or residual marker? Am J Psychiatry 152:1317–1321PubMedGoogle Scholar
  19. Deuschl G et al (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355:896–908PubMedCrossRefGoogle Scholar
  20. Dostrovsky JO, Lozano AM (2002) Mechanisms of deep brain stimulation. Mov Disord 17:S63–S68PubMedCrossRefGoogle Scholar
  21. Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489PubMedCrossRefGoogle Scholar
  22. Everitt BJ, Dickinson A, Robbins TW (2001) The neuropsychological basis of addictive behavior. Brain Res Brain Res Rev 36:129–138PubMedCrossRefGoogle Scholar
  23. Falkenstein M, Hohnsbein J, Hoormann J, Blanke L (1990) Effects of errors in choice reaction task on the ERP under focused and divided attention. In: Brunia CHM, Gaillard AWK, Kok A (eds) Psychophysiological brain research. University Press, Tilburg, pp 192–195Google Scholar
  24. Feuerstein TJ, Kammerer M, Lucking CH, Moser A (2011) Selective GABA release as a mechanistic basis of high-frequency stimulation used for the treatment of neuropsychiatric diseases. Naunyn Schmiedebergs Arch Pharmacol 384:1–20PubMedCrossRefGoogle Scholar
  25. Friedman A, Lax E, Dikshtein Y, Abraham L, Flaumenhaft Y, Sudai E, Ben-Tzion M, Yadid G (2011) Electrical stimulation of the lateral habenula produces an inhibitory effect on sucrose self-administration. Neuropharmacology 60:381–387PubMedCentralPubMedCrossRefGoogle Scholar
  26. Gao G, Wang X, He S, Li W, Wang Q, Liang Q, Zhao Y, Hou F, Chen L, Li A (2003) Clinical study for alleviating opiate drug psychological dependence by a method of ablating the nucleus accumbens with stereotactic surgery. Stereot Funct Neuros 81:96–104CrossRefGoogle Scholar
  27. Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E (1993) A neural system for error-detection and compensation. Psychol Sci 4:385–390CrossRefGoogle Scholar
  28. George DT, Rawlings R, Eckardt MJ, Phillips MJ, Shoaf SE, Linnoila M (1999) Buspirone treatment of alcoholism: age of onset, and cerebrospinal fluid 5-hydroxyindolacetic acid and homovanillic acid concentrations, but not medication treatment, predict return to drinking. Alcohol Clin Exp Res 23:272–278PubMedGoogle Scholar
  29. Greenberg BD, Malone DA, Friehs GM, Rezai AR, Kubu CS, Malloy PF, Salloway SP, Okun MS, Goodman WK, Rasmussen SA (2006) Three-year outcomes in deep brain stimulation for highly resistant obsessive–compulsive disorder. Neuropsychopharmacology 31:2384–2393PubMedCrossRefGoogle Scholar
  30. Hammond C, Ammari R, Bioulac B, Garcia L (2008) Latest view on the mechanism of action of deep brain stimulation. Mov Disord 23:2111–2121PubMedCrossRefGoogle Scholar
  31. Heinz A, Dufeu P, Kuhn S, Dettling M, Graf K, Kurten I, Rommelspacher H, Schmidt LG (1996) Psychopathological and behavioral correlates of dopaminergic sensitivity in alcohol-dependent patients. Arch Gen Psychiatry 53:1123–1128PubMedCrossRefGoogle Scholar
  32. Heinz A, Siessmeier T, Wrase J, Hermann D, Klein S, Grusser SM, Flor H, Braus DF, Buchholz HG, Grunder G, Schreckenberger M, Smolka MN, Rosch F, Mann K, Bartenstein P (2004) Correlation between dopamine D(2) receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry 161:1783–1789PubMedCrossRefGoogle Scholar
  33. Heinz A, Siessmeier T, Wrase J, Buchholz HG, Grunder G, Kumakura Y, Cumming P, Schreckenberger M, Smolka MN, Rosch F, Mann K, Bartenstein P (2005) Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: a combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients. Am J Psychiatry 162:1515–1520PubMedCrossRefGoogle Scholar
  34. Heinz A, Beck A, Grüsser SM, Grace AA, Wrase J (2009) Identifying the neural circuitry of alcohol craving and relapse vulnerability. Addict Biol 14:108–118PubMedCentralPubMedCrossRefGoogle Scholar
  35. Heinze HJ, Heldmann M, Voges J, Hinrichs H, Marco-Pallares J, Hopf JM, Müller UJ, Galazky I, Sturm V, Bogerts B, Münte TF (2009) Counteracting incentive sensitization in severe alcohol dependence using deep brain stimulation of the nucleus accumbens: clinical and basic science aspects. Front Hum Neurosci 3:22PubMedCentralPubMedCrossRefGoogle Scholar
  36. Henderson MB, Green AI, Bradford PS, Chau DT, Roberts DW, Leiter JC (2010) Deep brain stimulation of the nucleus accumbens reduces alcohol intake in alcohol-preferring rats. Neurosurg Focus 29:1–7CrossRefGoogle Scholar
  37. Holroyd CB, Coles MGH (2002) The neural basis. of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109:679–709PubMedCrossRefGoogle Scholar
  38. Hopf JM, Luck SJ, Girelli M, Hagner T, Mangun GR, Scheich H, Heinze HJ (2000) Neural sources of focused attention in visual search. Cereb Cortex 10:1233–1241PubMedCrossRefGoogle Scholar
  39. Kanaka TS, Balasubramaniam V (1978) Stereotactic cingulumotomy for drug addiction. Appl Neurophysiol 41:86–92PubMedGoogle Scholar
  40. Kerr FW, Pozuelo J (1971) Suppression of physical dependence and induction of hypersensitivity to morphine by stereotaxic hypothalamic lesions in addicted rats. A new theory of addiction. Mayo Clin Proc 46:653–665PubMedGoogle Scholar
  41. Kilts CD, Schweitzer JB, Quinn CK, Gross RE, Faber TL, Muhammad F, Ely TD, Hoffman JM, Drexler KP (2001) Neural activity related to drug craving in cocaine addiction. Arch Gen Psychiatry 58:334–341PubMedCrossRefGoogle Scholar
  42. Kilts CD, Gross RE, Ely TD, Drexler KP (2004) The neural correlates of cue-induced craving in cocaine-dependent women. Am J Psychiatry 161:233–241PubMedCrossRefGoogle Scholar
  43. Kirsch-Darrow L, Zahodne LB, Marsiske M, Okun MS, Foote KD, Bowers D (2011) The trajectory of apathy after deep brain stimulation: from pre-surgery to 6 months post-surgery in Parkinson’s disease. Parkinsonism Relat Disord 17:182–188PubMedCentralPubMedCrossRefGoogle Scholar
  44. Knapp CM, Tozier L, Pak A, Ciraulo DA, Kornetsky C (2009) Deep brain stimulation of the nucleus accumbens reduces ethanol consumption in rats. Pharmacol Biochem Behav 92:474–479PubMedCentralPubMedCrossRefGoogle Scholar
  45. Knight G (1969) Chronic depression and drug addiction treated by stereotactic surgery. Nurs Times 65:583–586PubMedGoogle Scholar
  46. Knutson B, Fong GW, Adams CM, Varner JL, Hommer D (2001) Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 12:3683–3687PubMedCrossRefGoogle Scholar
  47. Koob GF, Le MM (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278:52–58PubMedCrossRefGoogle Scholar
  48. Koob GF, Le MM (2008) Review. Neurobiological mechanisms for opponent motivational processes in addiction. Philos Trans R Soc Lond B Biol Sci 363:3113–3123PubMedCrossRefGoogle Scholar
  49. Kuhn J, Lenartz D, Huff W, Lee S, Koulousakis A, Klosterkoetter J, Sturm V (2007) Remission of alcohol dependency following deep brain stimulation of the nucleus accumbens: valuable therapeutic implications? J Neurol Neurosurg Psychiatry 78:1152–1153PubMedCrossRefGoogle Scholar
  50. Kuhn J, Bauer R, Pohl S, Lenartz D, Huff W, Kim EH, Klosterkoetter J, Sturm V (2009a) Observations on unaided smoking cessation after deep brain stimulation of the nucleus accumbens. Eur Addict Res 15:196–201CrossRefGoogle Scholar
  51. Kuhn J, Gaebel W, Klosterkoetter J, Woopen C (2009b) Deep brain stimulation as a new therapeutic approach in therapy-resistant mental disorders: ethical aspects of investigational treatment. Eur Arch Psychiatry Clin Neurosci 259:S135–S141CrossRefGoogle Scholar
  52. Kuhn J, Gründler TOJ, Bauer R, Huff W, Fischer AG, Lenartz D, Maarouf M, Bührle C, Klosterkötter J, Ullsperger M, Sturm V (2011) Successful deep brain stimulation of the nucleus accumbens in severe alcohol dependence is associated with changed performance monitoring. Addict Biol 16:620–623PubMedCrossRefGoogle Scholar
  53. Kupsch A et al (2006) Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med 355:1978–1990PubMedCrossRefGoogle Scholar
  54. Laitinen LV (2001) Psychosurgery. Stereot Funct Neuros 76:239–242CrossRefGoogle Scholar
  55. Lenhard T, Brassen S, Tost H, Braus DF (2005) Long-term behavioral changes after unilateral stereotactic cingulotomy in a case of therapy-resistant alcohol dependence. World J Biol Psychiatry 6:264–266PubMedCrossRefGoogle Scholar
  56. Lipsman N, Giacobbe P, Bernstein M, Lozano AM (2011) Informed consent for clinical trials of deep brain stimulation in psychiatric disease: challenges and implications for trial design. J Med Ethics 38:107–111PubMedCrossRefGoogle Scholar
  57. Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy SH (2008) Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry 64:461–467PubMedCrossRefGoogle Scholar
  58. Luu P, Tucker DM (2001) Regulating action: alternating activation of midline frontal and motor cortical networks. Clin Neurophysiol 112:1295–1306PubMedCrossRefGoogle Scholar
  59. Malone J, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN, Rauch SL, Rasmussen SA, MacHado AG, Kubu CS, Tyrka AR, Price LH, Stypulkowski PH, Giftakis JE, Rise MT, Malloy PF, Salloway SP, Greenberg BD (2009) Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry 65:267–275PubMedCentralPubMedCrossRefGoogle Scholar
  60. Mantione M, Van De Brink W, Schuurman PR, Denys D (2010) Smoking cessation and weight loss after chronic deep brain stimulation of the nucleus accumbens: therapeutic and research implications: case report. Neurosurgery 66Google Scholar
  61. Mashour GA, Walker EE, Martuza RL (2005) Psychosurgery: past, present, and future. Brain Res Rev 48:409–419PubMedCrossRefGoogle Scholar
  62. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45:651–660PubMedCrossRefGoogle Scholar
  63. Medvedev SV, Anichkov AD, Polyakov Y (2003) Physiological mechanisms of the effectiveness of bilateral stereotactic cingulotomy against strong psychological dependence in drug addicts. Hum Physiol 29:492–497CrossRefGoogle Scholar
  64. Mink JW (2009) Clinical review of DBS for Tourette syndrome. Front Biosci (Elite Edn) 1:72–76Google Scholar
  65. Montgomery J, Baker KB (2000) Mechanisms of deep brain stimulation and future technical developments. Neurol Res 22:259–266PubMedGoogle Scholar
  66. Muller D, Roeder F, Orthner H (1973) Further results of stereotaxis in the human hypothalamus in sexual deviations. First use of this operation in addiction to drugs. Neurochirurgia 16:113–126PubMedGoogle Scholar
  67. Müller UJ, Sturm V, Voges J, Heinze HJ, Galazky I, Heldmann M, Scheich H, Bogerts B (2009) Successful treatment of chronic resistant alcoholism by deep brain stimulation of nucleus accumbens: first experience with three cases. Pharmacopsychiatry 42:288–291PubMedCrossRefGoogle Scholar
  68. Münte TF, Heldmann M, Hinrichs H, Marco-Pallares J, Kramer UM, Sturm V, Heinze HJ (2007) Nucleus accumbens is involved in human action monitoring: evidence from invasive electrophysiological recordings. Front Hum Neurosci 1:11PubMedCentralPubMedGoogle Scholar
  69. Münte TF, Heldmann M, Hinrichs H, Marco-Pallares J, Kramer UM, Sturm V, Heinze HJ (2008) Contribution of subcortical structures to cognition assessed with invasive electrophysiology in humans. Front Neurosci 2:72–78PubMedCentralPubMedCrossRefGoogle Scholar
  70. Myrick H, Anton RF, Li X, Henderson S, Randall PK, Voronin K (2008) Effect of naltrexone and ondansetron on alcohol cue-induced activation of the ventral striatum in alcohol-dependent people. Arch Gen Psychiatry 65:466–475PubMedCentralPubMedCrossRefGoogle Scholar
  71. Porta M, Brambilla A, Cavanna AE, Servello D, Sassi M, Rickards H, Robertson MM (2009) Thalamic deep brain stimulation for treatment-refractory Tourette syndrome: two-year outcome. Neurology 73:1375–1380PubMedCrossRefGoogle Scholar
  72. Robinson TE, Berridge KC (2008) Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci 363:3137–3146PubMedCrossRefGoogle Scholar
  73. Rodriguez-Fornells A, Kurzbuch AR, Munte TF (2002) Time course of error detection and correction in humans: neurophysiological evidence. J Neurosci 22:9990–9996PubMedGoogle Scholar
  74. Rouaud T, Lardeux S, Panayotis N, Paleressompoulle D, Cador M, Baunez C (2010) Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proc Natl Acad Sci U S A 107:1196–1200PubMedCentralPubMedCrossRefGoogle Scholar
  75. Schlaepfer TE, Cohen MX, Frick C, Kosel M, Brodesser D, Axmacher N, Joe AY, Kreft M, Lenartz D, Sturm V (2008) Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33:368–377PubMedCrossRefGoogle Scholar
  76. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599PubMedCrossRefGoogle Scholar
  77. Servello D, Porta M, Sassi M, Brambilla A, Robertson MM (2008) Deep brain stimulation in 18 patients with severe Gilles de la Tourette syndrome refractory to treatment: the surgery and stimulation. J Neurol Neurosurg Psychiatry 79:136–142PubMedCrossRefGoogle Scholar
  78. Siessmeier T, Kienast T, Wrase J, Larsen JL, Braus DF, Smolka MN, Buchholz HG, Schreckenberger M, Rosch F, Cumming P, Mann K, Bartenstein P, Heinz A (2006) Net influx of plasma 6-[18F]fluoro-L-DOPA (FDOPA) to the ventral striatum correlates with prefrontal processing of affective stimuli. Eur J Neurosci 24:305–313PubMedCrossRefGoogle Scholar
  79. Sinha R, Li CS (2007) Imaging stress- and cue-induced drug and alcohol craving: association with relapse and clinical implications. Drug Alcohol Rev 26:25–31PubMedCrossRefGoogle Scholar
  80. Smeding HM, Speelman JD, Huizenga HM, Schuurman PR, Schmand B (2011) Predictors of cognitive and psychosocial outcome after STN DBS in Parkinson’s disease. J Neurol Neurosurg Psychiatry 82:754–760PubMedCrossRefGoogle Scholar
  81. Sturm V, Lenartz D, Koulousakis A, Treuer H, Herholz K, Klein JC, KlosterkÖtter J (2003) The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive- and anxiety-disorders. J Chem Neuroanat 26:293–299PubMedCrossRefGoogle Scholar
  82. Takahashi YK, Roesch MR, Stalnaker TA, Haney RZ, Calu DJ, Taylor AR, Burke KA, Schoenbaum G (2009) The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes. Neuron 62:269–280PubMedCentralPubMedCrossRefGoogle Scholar
  83. Taylor SF, Phan KL, Decker LR, Liberzon I (2003) Subjective rating of emotionally salient stimuli modulates neural activity. Neuroimage 18:650–659PubMedCrossRefGoogle Scholar
  84. Urbano FJ, Leznik E, Llinas RR (2002) Cortical activation patterns evoked by afferent axons stimuli at different frequencies: an in vitro voltage-sensitive dye imaging study. Thal Relat Syst 1:371–378Google Scholar
  85. Vassoler FM, Schmidt HD, Gerard ME, Famous KR, Ciraulo DA, Kornetsky C, Knapp CM, Pierce RC (2008) Deep brain stimulation of the nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug seeking in rats. J Neurosci 28:8735–8739PubMedCentralPubMedCrossRefGoogle Scholar
  86. Voges J, Waerzeggers Y, Maarouf M, Lehrke R, Koulousakis A, Lenartz D, Sturm V (2006) Deep-brain stimulation: long-term analysis of complications caused by hardware and surgery-experiences from a single centre. J Neurol Neurosur Ps 77:868–872CrossRefGoogle Scholar
  87. Volkow ND, Wang GJ, Fowler JS, Logan J, Hitzemann R, Ding YS, Pappas N, Shea C, Piscani K (1996) Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol Clin Exp Res 20:1594–1598PubMedCrossRefGoogle Scholar
  88. Vollstädt-Klein S, Loeber S, Richter A, Kirsch M, Bach P, von der Goltz C, Hermann D, Mann K, Kiefer F (2011) Validating incentive salience with functional magnetic resonance imaging: association between mesolimbic cue reactivity and attentional bias in alcohol-dependent patients. Addict Biol. doi:  10.1111/j.1369-1600.2011.00352.x. [Epub ahead of print]
  89. Witjas T, Baunez C, Henry JM, Delfini M, Regis J, Cherif AA, Peragut JC, Azulay JP (2005) Addiction in Parkinson’s disease: impact of subthalamic nucleus deep brain stimulation. Mov Disord 20:1052–1055PubMedCrossRefGoogle Scholar
  90. Wojtecki L, Timmermann L, Groiss SJ, Elben S, Reck C, Sudmeyer M, Sturm V, Schnitzler A (2011) Long-term time course of affective lability after subthalamic deep brain stimulation electrode implantation. Neurocase 17:527–532PubMedCrossRefGoogle Scholar
  91. Woodman GF, Luck SJ (1999) Electrophysiological measurement of rapid shifts of attention during visual search. Nature 400:867–869PubMedCrossRefGoogle Scholar
  92. Wrase J, Kahnt T, Schlagenhauf F, Beck A, Cohen MX, Knutson B, Heinz A (2007) Different neural systems adjust motor behavior in response to reward and punishment. Neuroimage 36:1253–1262PubMedCrossRefGoogle Scholar
  93. Yen CP, Kuan CY, Sheehan J, Kung SS, Wang CC, Liu CK, Kwan AL (2009) Impact of bilateral anterior cingulotomy on neurocognitive function in patients with intractable pain. J Clin Neurosci 16:214–219PubMedCrossRefGoogle Scholar
  94. Zhou H, Xu J, Jiang J (2011) Deep brain stimulation of nucleus accumbens on heroin-seeking behaviors: a case report. Biol Psychiatry 69:e41–e42PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas F. Münte
    • 1
    Email author
  • Hans-Jochen Heinze
    • 2
  • Veerle Visser-Vandewalle
    • 3
  1. 1.Clinic for NeurologyLübeckGermany
  2. 2.Department of NeurologyUniversity of MagdeburgMagdeburgGermany
  3. 3.School for Mental Health and Neuroscience, Maastricht Institute for Neuromodulative DevelopmentMaastricht University and Medical CentreMaastrichtThe Netherlands

Personalised recommendations