Skip to main content

Sliding Empirical Mode Decomposition-Brain Status Data Analysis and Modeling

  • Chapter
Advances in Intelligent Signal Processing and Data Mining

Part of the book series: Studies in Computational Intelligence ((SCI,volume 410))

Abstract

Biomedical signals are in general non-linear and non-stationary. Empirical Mode Decomposition in conjunction with Hilbert-Huang Transform provides a fully adaptive and data-driven technique to extract Intrinsic Mode Functions (IMFs). The latter represent a complete set of locally orthogonal basis functions to represent non-linear and non-stationary time series. Large scale biomedical time series necessitate an online analysis which is presented in this contribution. It shortly reviews the technique of EMD and related algorithms, discusses the newly proposed SEMD algorithm and presents some applications to biomedical time series recorded during neuromonitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huang, N.E., Shen, Z., Long, S.R., Wu, M.L., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: Proc. Roy. Soc. London A 454, 903 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Georgia, M.A.D., Deogaonkar, A.: The Neurologist 11(1), 45 (2005)

    Article  Google Scholar 

  3. Sahuquillo, J.: European Journal of Anaesthesiology 42(suppl. 42), 83 (2008)

    Article  Google Scholar 

  4. Brawanski, A., Faltermeier, R., Rothoerl, R.D., Woertgen, C.: Journal of Cerebral Blood Flow & Metabolism 22, 605 (2002)

    Article  Google Scholar 

  5. Ursino, M., Lodi, C.: Journal of Applied Physiology 82(4), 1256 (1997)

    Google Scholar 

  6. Ursino, M., Minassian, A.T., Lodi, C.A., Beydon, L.: American journal of physiology. Heart and Circulatory Physiology 279(5), H2439 (2000)

    Google Scholar 

  7. Jung, A., Faltermeier, R., Rothoer, R., Brawanski, A., Math, J.: J. Math. Biol. 51(5), 491 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Böhm, M.: Workshop Report VI Graduate College 638, Nonlinearity and Nonequilibrium in Condensed Matter (2006)

    Google Scholar 

  9. Lo, M.T., Hu, K., Liu, Y., Peng, C.K., Novak, V.: EURASIP J. Adv. Sig. Proc. (2008); doi:10.1155/2008/785243

    Google Scholar 

  10. Ursino, M.: Annals of Biomedical Engineering 16, 379 (1988)

    Article  Google Scholar 

  11. Purves, M.J.: The Physiology of the Cerebral Circulation. Cambirdge University Press (1972)

    Google Scholar 

  12. Sklar, F.H., Elashvili, I.: Journal of Neurosurgery 47, 670 (1977)

    Article  Google Scholar 

  13. Fridén, H.G., Ekstedt, J.: Neurosurgery 13(4), 351 (1983)

    Google Scholar 

  14. Böhm, M., Stadlthanner, K., Gruber, P., Theis, F.J., Tomé, A.M., Teixeira, A.R., Gronwald, W., Kalbitzer, H.R., Lang, E.W.: IEEE Trans. Biomed. Engineering 53, 810 (2006)

    Article  Google Scholar 

  15. Quiroga, R.Q., Arnhold, J., Grassberger, P.: Phys. Rev. E 61, 5142 (2000)

    Article  Google Scholar 

  16. Quiroga, R.Q., Kraskov, A., Kreuz, T., Grassberger, P.: Phys. Rev. E 65, 041903 (2002)

    Google Scholar 

  17. Hunag, N.E., Shen, S.S.P.: Hilbert Huang Transform and its Applications. World Scientific (2005)

    Google Scholar 

  18. Hunag, N.E., Attoh-Okine, N.: Hilbert Huang Transform in Engineering. Taylor & Francis (2005)

    Google Scholar 

  19. Wu, Z., Huang, N.E.: Adv. Adaptive Data Analysis 1(1), 1 (2009)

    Article  Google Scholar 

  20. Niazy, R.K., Beckmann, C.F., Brady, J.M., Smith, S.M.: Advances Adaptive Data Analysis 1(2), 231 (2009)

    Article  MathSciNet  Google Scholar 

  21. Faltermeier, R., Zeiler, A., Keck, I.R., Tomé, A.M., Brawanski, A., Lang, E.W.: In: Proc. IJCNN 2010, pp. 978–971. IEEE (2010) ISBN:978-1-4244-6917-8

    Google Scholar 

  22. Rilling, G., Flandrin, P., Goncalès, P.: In: Proc. 6th IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (2003)

    Google Scholar 

  23. Flandrin, P., Gonçalvès, P., Rilling, G.: In: EUSIPCO 2004, pp. 1581–1584 (2004)

    Google Scholar 

  24. Wu, Z.: http://rcada.ncu.edu.tw/eemd.m

  25. Julien, C.: Cardiovascular Research 70, 12 (2006)

    Article  Google Scholar 

  26. Wu, M.C., Struzik, Z.R., Watanabe, E., Yamamoto, Y., Hu, C.K.: In: AIP Conf. Proc., vol. 922, pp. 573–576 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Zeiler, A. et al. (2013). Sliding Empirical Mode Decomposition-Brain Status Data Analysis and Modeling. In: Georgieva, P., Mihaylova, L., Jain, L. (eds) Advances in Intelligent Signal Processing and Data Mining. Studies in Computational Intelligence, vol 410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28696-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28696-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28695-7

  • Online ISBN: 978-3-642-28696-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics