Advertisement

Translation in Trypanosomatids

Chapter
  • 699 Downloads
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 28)

Abstract

Protein synthesis in trypanosomatids plays a key role in shaping the developmental program of gene expression during their complex life cycle. Trypanosomatids are well known for their unusual mechanisms and pathways, including trans-splicing of primary mRNAs. The Spliced Leader RNA donates a unique, hypermethylated cap-4 structure to all mRNAs, which requires special adaptations by the cap-binding complex. The cap-binding eIF4F anchors the translation initiation complex in the majority of cases. The trypanosomatid cap-binding proteins show evolutionary divergence, and cannot replace the function of their yeast counterparts. The molecules that comprise the cap-4 binding complex are described and compared to their orthologues from higher eukaryotes, trying to reveal their specific functions. A novel eIF4E-interacting protein is assumed to direct stage-specific translation pathways, adapted to the different environmental conditions. Special attention is given to the unusual finding that differential translation is driven by defined elements in the 3′ UTR, and potential mechanisms are discussed, including structural changes of the RNA. The effects of environmental switches on the translational machinery are also discussed.

Keywords

Translation Initiation Internal Ribosome Entry Site High Eukaryote Stress Granule Rabbit Reticulocyte Lysate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adam SA, Nakagawa T, Swanson MS, Woodruff TK, Dreyfuss G (1986) mRNA polyadenylate-binding protein: gene isolation and sequencing and identification of a ribonucleoprotein consensus sequence. Mol Cell Biol 6:2932–2943PubMedGoogle Scholar
  2. Ahmed R, Duncan RF (2004) Translational regulation of Hsp90 mRNA. AUG-proximal 5′-untranslated region elements essential for preferential heat shock translation. J Biol Chem 279:49919–49930PubMedCrossRefGoogle Scholar
  3. Altmann M, Muller PP, Pelletier J, Sonenberg N, Trachsel H (1989) A mammalian translation initiation factor can substitute for its yeast homologue in vivo. J Biol Chem 264:12145–12147PubMedGoogle Scholar
  4. Amrani N, Ghosh S, Mangus DA, Jacobson A (2008) Translation factors promote the formation of two states of the closed-loop mRNP. Nature 453:1276–1280PubMedCrossRefGoogle Scholar
  5. Andreev DE, Dmitriev SE, Terenin IM, Prassolov VS, Merrick WC, Shatsky IN (2009) Differential contribution of the m7G-cap to the 5′ end-dependent translation initiation of mammalian mRNAs. Nucleic Acids Res 37:6135–6147PubMedCrossRefGoogle Scholar
  6. Arhin GK, Ullu E, Tschudi C (2006) 2′-O-Methylation of position 2 of the trypanosome spliced leader cap 4 is mediated by a 48 kDa protein related to vaccinia virus VP39. Mol Biochem Parasitol 147:137–139PubMedCrossRefGoogle Scholar
  7. Bangs JD, Crain PF, Hashizume T, Mccloskey JA, Boothroyd JC (1992) Mass spectrometry of mRNA cap-4 from trypanosomatids reveals two novel nucleosides. J Biol Chem 267:9805–9815PubMedGoogle Scholar
  8. Barak E, Amin-Spector S, Gerliak E, Goyard S, Holland N, Zilberstein D (2005) Differentiation of Leishmania donovani in host-free system: analysis of signal perception and response. Mol Biochem Parasitol 141:99–108PubMedCrossRefGoogle Scholar
  9. Bates PA, Cobertson CD, Tetley L, Coombs GH (1992) Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms. Parasitology 105:193–202PubMedCrossRefGoogle Scholar
  10. Bates EJ, Knuepfer E, Smith DF (2000) Poly(A)-binding protein I of Leishmania: functional analysis and localisation in trypanosomatid parasites. Nucleic Acids Res 28:1211–1220PubMedCrossRefGoogle Scholar
  11. Batista JA, Teixeira SM, Donelson JE, Kirchhoff LV, de Sá CM (1994) Characterization of a Trypanosoma cruzi poly(A)-binding protein and its genes. Mol Biochem Parasitol 67:301–312PubMedCrossRefGoogle Scholar
  12. Bert AG, Grepin R, Vadas MA, Goodall GJ (2006) Assessing IRES activity in the HIF-1alpha and other cellular 5′ UTRs. RNA 12:1074–1083PubMedCrossRefGoogle Scholar
  13. Billaut-Mulot O, Fernandez-Gomez R, Loyens M, Ouaissi A (1996) Trypanosoma cruzi elongation factor 1-alpha: nuclear localization in parasites undergoing apoptosis. Gene 174:19–26PubMedCrossRefGoogle Scholar
  14. Boucher N, Wu Y, Dumas C, Dube M, Sereno D, Breton M, Papadopoulou B (2002) A common mechanism of stage-regulated gene expression in Leishmania mediated by a conserved 3′-untranslated region element. J Biol Chem 277:19511–19520PubMedCrossRefGoogle Scholar
  15. Buchan JR, Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36:932–941PubMedCrossRefGoogle Scholar
  16. Carr-Schmid A, Durko N, Cavallius J, Merrick WC, Kinzy TG (1999) Mutations in a GTP-binding motif of eukaryotic elongation factor 1A reduce both translational fidelity and the requirement for nucleotide exchange. J Biol Chem 274:30297–30302PubMedCrossRefGoogle Scholar
  17. Cassola A, De Gaudenzi JG, Frasch AC (2007) Recruitment of mRNAs to cytoplasmic ribonucleoprotein granules in trypanosomes. Mol Microbiol 65:655–670PubMedCrossRefGoogle Scholar
  18. Cheng S, Gallie DR (2007) eIF4G, eIFiso4G, and eIF4B bind the poly(A)-binding protein through overlapping sites within the RNA recognition motif domains. J Biol Chem 282:25247–25258PubMedCrossRefGoogle Scholar
  19. Clayton CE (2002) Life without transcriptional control? From fly to man and back again. EMBO J 21:1881–1888PubMedCrossRefGoogle Scholar
  20. Clayton C, Shapira M (2007) Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol 156:93–101PubMedCrossRefGoogle Scholar
  21. da Costa Lima TD, Moura DM, Reis CR, Vasconcelos JR, Ellis L, Carrington M, Figueiredo RC, de Melo Neto OP (2010) Functional characterization of three Leishmania poly(a) binding protein homologues with distinct binding properties to RNA and protein partners. Eukaryot Cell 9:1484–1494PubMedCrossRefGoogle Scholar
  22. David M, Gabdank I, Ben-David M, Zilka A, Orr I, Barash D, Shapira M (2010) Preferential translation of Hsp83 in Leishmania requires a thermosensitive polypyrimidine-rich element in the 3′ UTR and involves scanning of the 5′ UTR. RNA 16:364–374PubMedCrossRefGoogle Scholar
  23. Deo RC, Bonanno JB, Sonenberg N, Burley SK (1999) Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98:835–845PubMedCrossRefGoogle Scholar
  24. Derry MC, Yanagiya A, Martineau Y, Sonenberg N (2006) Regulation of poly(A)-binding protein through PABP-interacting proteins. Cold Spring Harb Symp Quant Biol 71:537–543PubMedCrossRefGoogle Scholar
  25. Dever TE (2002) Gene-specific regulation by general translation factors. Cell 108:545–556PubMedCrossRefGoogle Scholar
  26. Dhalia R, Reis CR, Freire ER, Rocha PO, Katz R, Muniz JR, Standart N, de Melo Neto OP (2005) Translation initiation in Leishmania major: characterisation of multiple eIF4F subunit homologues. Mol Biochem Parasitol 140:23–41PubMedCrossRefGoogle Scholar
  27. Dhalia R, Marinsek N, Reis CR, Katz R, Muniz JR, Standart N, Carrington M, de Melo Neto OP (2006) The two eIF4A helicases in Trypanosoma brucei are functionally distinct. Nucleic Acids Res 34:2495–2507PubMedCrossRefGoogle Scholar
  28. Duszenko M, Kang X, Bohme U, Homke R, Lehner M (1999) In vitro translation in a cell-free system from Trypanosoma brucei yields glycosylated and glycosylphosphatidylinositol-anchored proteins. Eur J Biochem 266:789–797PubMedCrossRefGoogle Scholar
  29. Eberle J, Kurbanov BM, Hossini AM, Trefzer U, Fecker LF (2007) Overcoming apoptosis deficiency of melanoma-hope for new therapeutic approaches. Drug Resist Update 10:218–234CrossRefGoogle Scholar
  30. Ferraiuolo MA, Lee CS, Ler LW, Hsu JL, Costa-Mattioli M, Luo MJ, Reed R, Sonenberg N (2004) A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc Natl Acad Sci U S A 101:4118–4123PubMedCrossRefGoogle Scholar
  31. Folgueira C, Quijada L, Soto M, Abanades DR, Alonso C, Requena JM (2005) The translational efficiencies of the two Leishmania infantum HSP70 mRNAs, differing in their 3′-untranslated regions, are affected by shifts in the temperature of growth through different mechanisms. J Biol Chem 280:35172–35183PubMedCrossRefGoogle Scholar
  32. Freire ER, Dhalia R, Moura DM, da Costa Lima TD, Lima RP, Reis CR, Hughes K, Figueiredo RC, Standart N, Carrington M, de Melo Neto OP (2011) The four trypanosomatid eIF4E homologues fall into two separate groups, with distinct features in primary sequence and biological properties. Mol Biochem Parasitol 176:25–36PubMedCrossRefGoogle Scholar
  33. Gandin V, Miluzio A, Barbieri AM, Beugnet A, Kiyokawa H, Marchisio PC, Biffo S (2008) Eukaryotic initiation factor 6 is rate-limiting in translation, growth and transformation. Nature 455:684–688PubMedCrossRefGoogle Scholar
  34. Gao H, Ayub MJ, Levin MJ, Frank J (2005) The structure of the 80S ribosome from Trypanosoma cruzi reveals unique rRNA components. Proc Natl Acad Sci U S A 102:10206–10211PubMedCrossRefGoogle Scholar
  35. Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N (1999a) Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 13:1422–1437PubMedCrossRefGoogle Scholar
  36. Gingras AC, Raught B, Sonenberg N (1999b) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963PubMedCrossRefGoogle Scholar
  37. Gross SR, Kinzy TG (2005) Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology. Nat Struct Mol Biol 12:772–778PubMedCrossRefGoogle Scholar
  38. Gross JD, Moerke NJ, von der Haar T, Lugovskoy AA, Sachs AB, McCarthy JE, Wagner G (2003) Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell 115:739–750PubMedCrossRefGoogle Scholar
  39. Grossi de Sa MF, de Sa C, Pereira de Almeida ER, Barbosa da Cruz W, Filho SA, Gander ES (1984) Optimization of a protein synthesizing lysate system from Trypanosoma cruzi. Mol Biochem Parasitol 10:347–354PubMedCrossRefGoogle Scholar
  40. Haile S, Papadopoulou B (2007) Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Curr Opin Microbiol 10(6):569–577PubMedCrossRefGoogle Scholar
  41. Hashimoto T, Nakamura Y, Kamaishi T, Adachi J, Nakamura F, Okamoto K, Hasegawa M (1995) Phylogenetic place of kinetoplastid protozoa inferred from a protein phylogeny of elongation factor 1 alpha. Mol Biochem Parasitol 70:181–185PubMedCrossRefGoogle Scholar
  42. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88PubMedCrossRefGoogle Scholar
  43. Hellen CU, Sarnow P (2001) Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15:1593–1612PubMedCrossRefGoogle Scholar
  44. Hershey PE, McWhirter SM, Gross JD, Wagner G, Alber T, Sachs AB (1999) The Cap-binding protein eIF4E promotes folding of a functional domain of yeast translation initiation factor eIF4GI. J Biol Chem 274:21297–21304PubMedCrossRefGoogle Scholar
  45. Hess MA, Duncan RF (1996) Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5′-UTR secondary structure specifically inhibits heat shock protein mRNA translation. Nucleic Acids Res 24:2441–2449PubMedCrossRefGoogle Scholar
  46. Hiremath LS, Hiremath ST, Rychlik W, Joshi S, Domier LL, Rhoads RE (1989) In vitro synthesis, phosphorylation, and localization on 48S initiation complexes of human protein synthesis initiation factor 4E. J Biol Chem 264:1132–1138PubMedGoogle Scholar
  47. Holcik M, Sonenberg N (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6:318–327PubMedCrossRefGoogle Scholar
  48. Holcik M, Sonenberg N, Korneluk RG (2000) Internal ribosome initiation of translation and the control of cell death. Trends Genet 16:469–473PubMedCrossRefGoogle Scholar
  49. Hotchkiss TL, Nerantzakis GE, Dills SC, Shang L, Read LK (1999) Trypanosoma brucei poly(A) binding protein I cDNA cloning, expression, and binding to 5 untranslated region sequence elements. Mol Biochem Parasitol 98:117–129PubMedCrossRefGoogle Scholar
  50. Imataka H, Sonenberg N (1997) Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Mol Cell Biol 17:6940–6947PubMedGoogle Scholar
  51. Jackson RJ (2005) Alternative mechanisms of initiating translation of mammalian mRNAs. Biochem Soc Trans 33:1231–1241PubMedCrossRefGoogle Scholar
  52. Jacobson A (2005) The end justifies the means. Nat Struct Mol Biol 12:474–475PubMedCrossRefGoogle Scholar
  53. Jaramillo M, Gomez MA, Larsson O, Shio MT, Topisirovic I, Contreras I, Luxenburg R, Rosnefeld A, Colina R, McMaster RW et al (2011) Leishmania repression of host translation through mTOR cleavage is required for parasite survival and infection. Cell Host Microbe 9:331–341PubMedCrossRefGoogle Scholar
  54. Jorgensen R, Merrill AR, Andersen GR (2006) The life and death of translation elongation factor 2. Biochem Soc Trans 34:1–6PubMedCrossRefGoogle Scholar
  55. Kahvejian A, Svitkin YV, Sukarieh R, M’Boutchou MN, Sonenberg N (2005) Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev 19:104–113PubMedCrossRefGoogle Scholar
  56. Klemenz R, Hultmark D, Gehring WJ (1985) Selective translation of heat shock mRNA in Drosophila melanogaster depends on sequence information in the leader. EMBO J 4:2053–2060PubMedGoogle Scholar
  57. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292PubMedCrossRefGoogle Scholar
  58. Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148PubMedCrossRefGoogle Scholar
  59. Kramer S, Queiroz R, Ellis L, Webb H, Hoheisel JD, Clayton C, Carrington M (2008) Heat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF2(alpha) phosphorylation at Thr169. J Cell Sci 121:3002–3014PubMedCrossRefGoogle Scholar
  60. Kuge H, Brownlee GG, Gershon PD, Richter JD (1998) Cap ribose methylation of c-mos mRNA stimulates translation and oocyte maturation in Xenopus laevis. Nucleic Acids Res 26:3208–3214PubMedCrossRefGoogle Scholar
  61. Lahav T, Sivam D, Volpin H, Ronen M, Tsigankov P, Green A, Holland N, Kuzyk M, Borchers C, Zilberstein D et al (2010) Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB J 25(2):515–25PubMedCrossRefGoogle Scholar
  62. Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594PubMedCrossRefGoogle Scholar
  63. Larreta R, Soto M, Quijada L, Folgueira C, Abanades DR, Alonso C, Requena JM (2004) The expression of HSP83 genes in Leishmania infantum is affected by temperature and by stage-differentiation and is regulated at the levels of mRNA stability and translation. BMC Mol Biol 5:3PubMedCrossRefGoogle Scholar
  64. Lawrence JC Jr, Abraham RT (1997) PHAS/4E-BPs as regulators of mRNA translation and cell proliferation. Trends Biochem Sci 22:345–349PubMedCrossRefGoogle Scholar
  65. Le Sourd F, Boulben S, Le Bouffant R, Cormier P, Morales J, Belle R, Mulner-Lorillon O (2006) eEF1B: At the dawn of the 21st century. Biochim Biophys Acta 1759:13–31PubMedCrossRefGoogle Scholar
  66. Lewdorowicz M, Yoffe Y, Zuberek J, Jemielity J, Stepinskil J, Kierzek R, Stolarskil R, Shapira M, Darzynkiewicz E (2004) Chemical synthesis and binding activity of the trypanosomatid cap-4 structure. RNA 10:1–10CrossRefGoogle Scholar
  67. Liang XH, Haritan A, Uliel S, Michaeli S (2003) Trans- and cis- splicing in trypanosomatids: mechanism, factors, and regulation. Eukaryot Cell 2:830–840PubMedCrossRefGoogle Scholar
  68. Liljas A (1991) Comparative biochemistry and biophysics of ribosomal proteins. Int Rev Cytol 124:103–136PubMedCrossRefGoogle Scholar
  69. Lin T-A, Kong X, Haystead TAJ, Pause A, Belsham G, Sonenberg N, Lawrence JCJ (1994) PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science 266:653–56PubMedCrossRefGoogle Scholar
  70. Linder P (2006) DEAD-box proteins: a family affair–active and passive players in RNP-remodeling. Nucleic Acids Res 34:4168–4180PubMedCrossRefGoogle Scholar
  71. Lopez M, Cherkasov A, Nandan D (2007) Molecular architecture of Leishmania EF-1alpha reveals a novel site that may modulate protein translation: a possible target for drug development. Biochem Biophys Res Commun 356:886–892PubMedCrossRefGoogle Scholar
  72. Lukes J, Paris Z, Regmi S, Breitling R, Mureev S, Kushnir S, Pyatkov K, Jirku M, Alexandrov KA (2006) Translational initiation in Leishmania tarentolae and Phytomonas serpens (Kinetoplastida) is strongly influenced by pre-ATG triplet and its 5′ sequence context. Mol Biochem Parasitol 148:125–132PubMedCrossRefGoogle Scholar
  73. Lye LF, Owens K, Shi H, Murta SM, Vieira AC, Turco SJ, Tschudi C, Ullu E, Beverley SM (2010) Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog 6:e1001161PubMedCrossRefGoogle Scholar
  74. Mader S, Lee H, Pause A, Sonenberg N (1995) The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4G and the translational repressors 4E-binding proteins. Mol Cell Biol 15:4990–4997PubMedGoogle Scholar
  75. Mandelboim M, Estrano CL, Tschudi C, Ullu E, Michaeli S (2002) On the role of exon and intron sequences in trans-splicing utilization and cap 4 modification of the trypanosomatid Leptomonas collosoma SL RNA. J Biol Chem 277:35210–35218PubMedCrossRefGoogle Scholar
  76. Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK (1997) Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89:951–961PubMedCrossRefGoogle Scholar
  77. Marcotrigiano J, Lomakin IB, Sonenberg N, Pestova TV, Hellen CU, Burley SK (2001) A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery. Mol Cell 7:193–203PubMedCrossRefGoogle Scholar
  78. Marintchev A, Wagner G (2005) eIF4G and CBP80 share a common origin and similar domain organization: implications for the structure and function of eIF4G. Biochemistry 44:12265–12272PubMedCrossRefGoogle Scholar
  79. Mateyak MK, Kinzy TG (2010) eEF1A: thinking outside the ribosome. J Biol Chem 285:21209–21213PubMedCrossRefGoogle Scholar
  80. Matsuo H, Li H, McGuire AM, Fletcher CM, Gingras AC, Sonenberg N, Wagner G (1997) Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein. Nat Struct Biol 9:717–724CrossRefGoogle Scholar
  81. McGarry TJ, Lindquist S (1985) The preferential translation of Drosophila hsp70 mRNA requires sequences in the untranslated leader. Cell 42:903–911PubMedCrossRefGoogle Scholar
  82. McNicoll F, Muller M, Cloutier S, Boilard N, Rochette A, Dube M, Papadopoulou B (2005) Distinct 3′-untranslated region elements regulate stage-specific mRNA accumulation and translation in Leishmania. J Biol Chem 280:35238–35246PubMedCrossRefGoogle Scholar
  83. Methot N, Pause A, Hershey JW, Sonenberg N (1994) The translation initiation factor eIF-4B contains an RNA-binding region that is distinct and independent from its ribonucleoprotein consensus sequence. Mol Cell Biol 14:2307–2316PubMedCrossRefGoogle Scholar
  84. Michaeli S (2011) Trans-splicing in trypanosomes: machinery and its impact on the parasite transcriptome. Future Microbiol 6:459–474PubMedCrossRefGoogle Scholar
  85. Mitchell SF, Walker SE, Algire MA, Park EH, Hinnebusch AG, Lorsch JR (2010) The 5′-7-methylguanosine cap on eukaryotic mRNAs serves both to stimulate canonical translation initiation and to block an alternative pathway. Mol Cell 39:950–962PubMedCrossRefGoogle Scholar
  86. Moerke NJ, Aktas H, Chen H, Cantel S, Reibarkh MY, Fahmy A, Gross JD, Degterev A, Yuan J, Chorev M et al (2007) Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 128:257–267PubMedCrossRefGoogle Scholar
  87. Moraes MC, Jesus TC, Hashimoto NN, Dey M, Schwartz KJ, Alves VS, Avila CC, Bangs JD, Dever TE, Schenkman S et al (2007) A novel membrane-bound eIF2{alpha} kinase in the flagellar pocket of Trypanosoma brucei. Eukaryot Cell 6(11):1979–91PubMedCrossRefGoogle Scholar
  88. Moreno SN, Ip HS, Cross GA (1991) An mRNA-dependent in vitro translation system from Trypanosoma brucei. Mol Biochem Parasitol 46:265–274PubMedCrossRefGoogle Scholar
  89. Mureev S, Kovtun O, Nguyen UT, Alexandrov K (2009) Species-independent translational leaders facilitate cell-free expression. Nat Biotechnol 27:747–752PubMedCrossRefGoogle Scholar
  90. Murray JW, Edmonds BT, Liu G, Condeelis J (1996) Bundling of actin filaments by elongation factor 1 alpha inhibits polymerization at filament ends. J Cell Biol 135:1309–1321PubMedCrossRefGoogle Scholar
  91. Nakamura Y, Hashimoto T, Kamaishi T, Adachi J, Nakamura F, Okamoto K, Hasegawa M (1996) Phylogenetic position of kinetoplastid protozoa inferred from the protein phylogenies of elongation factors 1alpha and 2. Journal of biochemistry 119:70–79PubMedCrossRefGoogle Scholar
  92. Nandan D, Yi T, Lopez M, Lai C, Reiner NE (2002) Leishmania EF-1alpha activates the Src homology 2 domain containing tyrosine phosphatase SHP-1 leading to macrophage deactivation. J Biol Chem 277:50190–50197PubMedCrossRefGoogle Scholar
  93. Nandan D, Cherkasov A, Sabouti R, Yi T, Reiner NE (2003) Molecular cloning, biochemical and structural analysis of elongation factor-1 alpha from Leishmania donovani: comparison with the mammalian homologue. Biochem Biophys Res Commun 302:646–652PubMedCrossRefGoogle Scholar
  94. Oberer M, Marintchev A, Wagner G (2005) Structural basis for the enhancement of eIF4A helicase activity by eIF4G. Genes Dev 19:2212–2223PubMedCrossRefGoogle Scholar
  95. Pause A, Belsham GJ, Gingras A-C, Donzé O, Lin T-A, Lawrence JCJ (1994) Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371:762–7PubMedCrossRefGoogle Scholar
  96. Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, Peters N, Adlem E, Tivey A, Aslett M et al (2007) Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39:839–847PubMedCrossRefGoogle Scholar
  97. Pestova TV, Lorch JR, Hellen CHT (2007) The mechanism of translation initiation in Eukaryotes. In: Mathews MB, Sonenberg N, Hershey JWB (eds) Translation control in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 87–128Google Scholar
  98. Pestova TV, de Breyne S, Pisarev AV, Abaeva IS, Hellen CU (2008) eIF2-dependent and eIF2-independent modes of initiation on the CSFV IRES: a common role of domain II. Embo J 27:1060–1072PubMedCrossRefGoogle Scholar
  99. Pilipenko EV, Pestova TV, Kolupaeva VG, Khitrina EV, Poperechnaya AN, Agol VI, Hellen CU (2000) A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes Dev 14:2028–2045PubMedGoogle Scholar
  100. Quijada L, Soto M, Alonso C, Requena JM (2000) Identification of a putative regulatory element in the 3′-untranslated region that controls expression of HSP70 in Leishmania infantum. Mol Biochem Parasitol 110:79–91PubMedCrossRefGoogle Scholar
  101. Rau M, Ohlmann T, Morley SJ, Pain VM (1996) A reevaluation of the cap-binding protein, eIF4E, as a rate-limiting factor for initiation of translation in reticulocyte lysate. J Biol Chem 271:8983–8990PubMedCrossRefGoogle Scholar
  102. Redpath NT, Price NT, Severinov KV, Proud CG (1993) Regulation of elongation factor-2 by multisite phosphorylation. Eur J Biochem 213:689–699PubMedCrossRefGoogle Scholar
  103. Regmi S, Rothberg KG, Hubbard JG, Ruben L (2008) The RACK1 signal anchor protein from Trypanosoma brucei associates with eukaryotic elongation factor 1A: a role for translational control in cytokinesis. Mol Microbiol 70:724–745PubMedCrossRefGoogle Scholar
  104. Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433:477–480PubMedCrossRefGoogle Scholar
  105. Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D (1994) Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci U S A 91:839–843PubMedCrossRefGoogle Scholar
  106. Rosenzweig D, Smith D, Myler PJ, Olafson RW, Zilberstein D (2008a) Post-translational modification of cellular proteins during Leishmania donovani differentiation. Proteomics 8:1843–1850PubMedCrossRefGoogle Scholar
  107. Rosenzweig D, Smith D, Opperdoes F, Stern S, Olafson RW, Zilberstein D (2008b) Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J 22(2):590–602PubMedCrossRefGoogle Scholar
  108. Ruan JP, Ullu E, Tschudi C (2007) Characterization of the Trypanosoma brucei cap hypermethylase Tgs1. Mol Biochem Parasitol 155:66–69PubMedCrossRefGoogle Scholar
  109. Rubtsova MP, Sizova DV, Dmitriev SE, Ivanov DS, Prassolov VS, Shatsky IN (2003) Distinctive properties of the 5′-untranslated region of human hsp70 mRNA. J Biol Chem 278:22350–22356PubMedCrossRefGoogle Scholar
  110. Sacks DL, Perkins PV (1984) Identification of an infective stage of Leishmania promastigotes. Science 223:11417–11419CrossRefGoogle Scholar
  111. Shapira M, McEwen JG, Jaffe CL (1988) Temperature effects on molecular processes which lead to stage differentiation in Leishmania. EMBO J 7:2895–2901PubMedGoogle Scholar
  112. Smulski CR, Longhi SA, Ayub MJ, Edreira MM, Simonetti L, Gomez KA, Basile JN, Chaloin O, Hoebeke J, Levin MJ (2011) Interaction map of the Trypanosoma cruzi ribosomal P protein complex (stalk) and the elongation factor 2. J Mol Recognit 24(2):359–70PubMedCrossRefGoogle Scholar
  113. Soengas MS, Lowe SW (2003) Apoptosis and melanoma chemoresistance. Oncogene 22:3138–3151PubMedCrossRefGoogle Scholar
  114. Song JM, Picologlou S, Grant CM, Firoozan M, Tuite MF, Liebman S (1989) Elongation factor EF-1 alpha gene dosage alters translational fidelity in Saccharomyces cerevisiae. Mol Cell Biol 9:4571–4575PubMedGoogle Scholar
  115. Terenin IM, Dmitriev SE, Andreev DE, Shatsky IN (2008) Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2. Nat Struct Mol Biol 15:836–841PubMedCrossRefGoogle Scholar
  116. Tomoo K, Shen X, Okabe K, Nozoe Y, Fukuhara S, Morino S, Sasaki M, Taniguchi T, Miyagawa H, Kitamura K et al (2003) Structural features of human initiation factor 4E, studied by X-ray crystal analyses and molecular dynamics simulations. J Mol Biol 328:365–383PubMedCrossRefGoogle Scholar
  117. Unbehaun A, Marintchev A, Lomakin IB, Didenko T, Wagner G, Hellen CU, Pestova TV (2007) Position of eukaryotic initiation factor eIF5B on the 80S ribosome mapped by directed hydroxyl radical probing. Embo J 26:3109–3123PubMedCrossRefGoogle Scholar
  118. Van der Ploeg LHT, Giannini SH, Cantor CR (1985) Heat shock genes: regulatory role for differentiation in parasitic protozoa. Science 228:1443–1446PubMedCrossRefGoogle Scholar
  119. Vickers TJ, Fairlamb AH (2004) Trypanothione S-transferase activity in a trypanosomatid ribosomal elongation factor 1B. J Biol Chem 279:27246–27256PubMedCrossRefGoogle Scholar
  120. Vivinus S, Baulande S, van Zanten M, Campbell F, Topley P, Ellis JH, Dessen P, Coste H (2001) An element within the 5′ untranslated region of human Hsp70 mRNA which acts as a general enhancer of mRNA translation. Eur J Biochem 268:1908–1917PubMedCrossRefGoogle Scholar
  121. Wells SE, Hillner PE, Vale RD, Sachs AB (1998) Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell 2:135–140PubMedCrossRefGoogle Scholar
  122. Wilson JE, Pestova TV, Hellen CU, Sarnow P (2000) Initiation of protein synthesis from the A site of the ribosome. Cell 102:511–520PubMedCrossRefGoogle Scholar
  123. Yamamoto Y, Singh CR, Marintchev A, Hall NS, Hannig EM, Wagner G, Asano K (2005) The eukaryotic initiation factor (eIF) 5 HEAT domain mediates multifactor assembly and scanning with distinct interfaces to eIF1, eIF2, eIF3, and eIF4G. Proc Natl Acad Sci U S A 102:16164–16169, Epub 12005 Oct 16127PubMedCrossRefGoogle Scholar
  124. Yang F, Demma M, Warren V, Dharmawardhane S, Condeelis J (1990) Identification of an actin-binding protein from Dictyostelium as elongation factor 1a. Nature 347:494–496PubMedCrossRefGoogle Scholar
  125. Yoffe Y, Zuberek J, Lewdorowicz M, Zeira Z, Keasar C, Orr-Dahan I, Jankowska-Anyszka M, Stepinski J, Darzynkiewicz E, Shapira M (2004) Cap-binding activity of an eIF4E homolog from Leishmania. RNA 10:1764–1775PubMedCrossRefGoogle Scholar
  126. Yoffe Y, Zuberek J, Lerer A, Lewdorowicz M, Stepinski J, Altmann M, Darzynkiewicz E, Shapira M (2006) Binding specificities and potential roles of isoforms of Eukaryotic initiation factor 4E in Leishmania. Eukaryot Cell 12:1969–1979CrossRefGoogle Scholar
  127. Yoffe Y, Leger M, Zinoviev A, Zuberek J, Darzynkiewicz E, Wagner G, Shapira M (2009) Evolutionary changes in the Leishmania eIF4F complex involve variations in the eIF4E-eIF4G interactions. Nucleic Acids Res 37:3243–3253PubMedCrossRefGoogle Scholar
  128. Yueh A, Schneider RJ (2000) Translation by ribosome shunting on adenovirus and hsp70 mRNAs facilitated by complementarity to 18 S rRNA. Genes Dev 14:414–421PubMedGoogle Scholar
  129. Zamudio JR, Mittra B, Zeiner GM, Feder M, Bujnicki JM, Sturm NR, Campbell DA (2006) Complete cap 4 formation is not required for viability in Trypanosoma brucei. Eukaryot Cell 5:905–915PubMedCrossRefGoogle Scholar
  130. Zamudio JR, Mittra B, Campbell DA, Sturm NR (2009) Hypermethylated cap 4 maximizes Trypanosoma brucei translation. Mol Microbiol 72:1100–1110PubMedCrossRefGoogle Scholar
  131. Zilka A, Garlapati S, Dahan E, Yaolsky V, Shapira M (2001) Developmental regulation of heat shock protein 83 in Leishmania. 3′ processing and mRNA stability control transcript abundance, and translation is directed by a determinant in the 3′-untranslated region. J Biol Chem 276:47922–47929PubMedGoogle Scholar
  132. Zinoviev A, Leger M, Wagner G, Shapira M (2011) A novel 4E-interacting protein in Leishmania is involved in stage-specific translation pathways. Nucleic Acids Res 39:8404–8415PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Life SciencesBen Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations