Skip to main content

The RNA Interference Pathway in Trypanosoma brucei

  • Chapter
  • First Online:
RNA Metabolism in Trypanosomes

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 28))

  • 819 Accesses

Abstract

In most eukaryotic cells, expression or delivery of long double-stranded RNA (dsRNA) signals the presence of foreign and/or potentially dangerous nucleic acids, such as viruses or transcripts derived from retroposons and transposons. As a consequence cells go on red alert and activate specific defense mechanisms to eliminate the invaders. Among such mechanisms is the RNA interference (RNAi) pathway, which is triggered by long dsRNAs, destroys target transcripts in a sequence-specific manner, and is widespread throughout eukaryotic evolution. Here we summarize our current understanding of the RNAi mechanism in Trypanosoma brucei, a protozoan parasite and early divergent eukaryote, and highlight similarities and differences with the RNAi machinery and its function in higher eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsford S, Horn D (2008) Single-locus targeting constructs for reliable regulated RNAi and transgene expression in Trypanosoma brucei. Mol Biochem Parasitol 161:76–79

    Article  PubMed  CAS  Google Scholar 

  • Alsford S, Kemp LE, Kawahara T, Horn D (2010) RNA interference, growth and differentiation appear normal in African trypanosomes lacking Tudor staphylococcal nuclease. Mol Biochem Parasitol 174:70–73

    Article  PubMed  CAS  Google Scholar 

  • Ameres SL, Horwich MD, Hung JH, Xu J, Ghildiyal M, Weng Z, Zamore PD (2010) Target RNA-directed trimming and tailing of small silencing RNAs. Science 328:1534–1539

    Article  PubMed  CAS  Google Scholar 

  • Aphasizheva I, Ringpis GE, Weng J, Gershon PD, Lathrop RH, Aphasizhev R (2009) Novel TUTase associates with an editosome-like complex in mitochondria of Trypanosoma brucei. RNA 15:1322–1337

    Article  PubMed  CAS  Google Scholar 

  • Barnes RL, Shi H, Kolev NG, Tschudi C, Ullu E (2012) Comparative genomics reveals two novel RNAi factors in Trypanosoma brucei and provides insight into the core machinery. PLoS Pathog (in press)

    Google Scholar 

  • Best A, Handoko L, Schluter E, Goringer HU (2005) In vitro synthesized small interfering RNAs elicit RNA interference in African trypanosomes: an in vitro and in vivo analysis. J Biol Chem 280:20573–20579

    Article  PubMed  CAS  Google Scholar 

  • Braun L, Cannella D, Ortet P, Barakat M, Sautel CF, Kieffer S, Garin J, Bastien O, Voinnet O, Hakimi MA (2010) A complex small RNA repertoire is generated by a plant/fungal-like machinery and effected by a metazoan-like Argonaute in the single-cell human parasite Toxoplasma gondii. PLoS Pathog 66(5):e1000920. doi:10.1371/journal.ppat.1000920

    Article  Google Scholar 

  • Cerutti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50:81–99

    Article  PubMed  CAS  Google Scholar 

  • DaRocha WD, Otsu K, Teixeira SM, Donelson JE (2004) Tests of cytoplasmic RNA interference (RNAi) and construction of a tetracycline-inducible T7 promoter system in Trypanosoma cruzi. Mol Biochem Parasitol 133:175–186

    Article  PubMed  CAS  Google Scholar 

  • Djikeng A, Shi H, Tschudi C, Ullu E (2001) RNA interference in Trypanosoma brucei: cloning of small interfering RNAs provides evidence for retroposon-derived 24-26-nucleotide RNAs. RNA 7:1522–1530

    PubMed  CAS  Google Scholar 

  • Djikeng A, Shi H, Tschudi C, Shen S, Ullu E (2003) An siRNA ribonucleoprotein is found associated with polyribosomes in Trypanosoma brucei. RNA 9:802–808

    Article  PubMed  CAS  Google Scholar 

  • Durand-Dubief M, Bastin P (2003) TbAGO1, an Argonaute protein required for RNA interference is involved in mitosis and chromosome segregation in Trypanosoma brucei. BMC Biol 1:2

    Article  PubMed  Google Scholar 

  • Durand-Dubief M, Absalon S, Menzer L, Ngwabyt S, Ersfeld K, Bastin P (2007) The Argonaute protein TbAGO1 contributes to large and mini-chromosome segregation and is required for control of RIME retroposons and RHS pseudogene-associated transcripts. Mol Biochem Parasitol 156:144–153

    Article  PubMed  CAS  Google Scholar 

  • Faehnle CR, Joshua-Tor L (2010) Argonaute MID domain takes centre stage. EMBO Rep 11:564–565

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Gupta SK, Hury A, Ziporen Y, Shi H, Ullu E, Michaeli S (2010) Small nucleolar RNA interference in Trypanosoma brucei: mechanism and utilization for elucidating the function of snoRNAs. Nucleic Acids Res 38:7236–7247

    Article  PubMed  CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki S, Kobayashi M, Yoda M, Sakaguchi Y, Katsuma S, Suzuki T, Tomari Y (2010) Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell 39:292–299

    Article  PubMed  CAS  Google Scholar 

  • Janzen CJ, van Deursen F, Shi H, Cross GA, Matthews KR, Ullu E (2006) Expression site silencing and life-cycle progression appear normal in Argonaute1-deficient Trypanosoma brucei. Mol Biochem Parasitol 149:102–107

    Article  PubMed  CAS  Google Scholar 

  • Jaskiewicz L, Filipowicz W (2008) Role of Dicer in posttranscriptional RNA silencing. Curr Top Microbiol Immunol 320:77–97

    Article  PubMed  CAS  Google Scholar 

  • Joshua-Tor L, Hannon GJ (2011) Ancestral roles of small RNAs: an ago-centric perspective. Cold Spring Harb Perspect Biol 3(10):a003772. doi:10.1101/cshperspect.a003772

    Article  PubMed  Google Scholar 

  • Kirino Y, Kim N, de Planell-Saguer M, Khandros E, Chiorean S, Klein PS, Rigoutsos I, Jongens TA, Mourelatos Z (2009) Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat Cell Biol 11:652–658

    Article  PubMed  CAS  Google Scholar 

  • Kolev NG, Franklin JB, Carmi S, Shi H, Michaeli S, Tschudi C (2010) The transcriptome of the human pathogen Trypanosoma brucei at single-nucleotide resolution. PLoS Pathog 6(9):e1001090. doi:10.1371/journal.ppat.1001090

    Article  PubMed  Google Scholar 

  • Kurth HM, Mochizuki K (2009) 2′-O-methylation stabilizes Piwi-associated small RNAs and ensures DNA elimination in Tetrahymena. RNA 15:675–685

    Article  PubMed  CAS  Google Scholar 

  • Li J, Yang Z, Yu B, Liu J, Chen X (2005) Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol 15:1501–1507

    Article  PubMed  CAS  Google Scholar 

  • Liang XH, Liu Q, Michaeli S (2003) Small nucleolar RNA interference induced by antisense or double-stranded RNA in trypanosomatids. Proc Natl Acad Sci USA 100:7521–7526

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Paroo Z (2010) Biochemical principles of small RNA pathways. Annu Rev Biochem 79:295–319

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Ye X, Jiang F, Liang C, Chen D, Peng J, Kinch LN, Grishin NV, Liu Q (2009) C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Science 325:750–753

    Article  PubMed  CAS  Google Scholar 

  • Lye LF, Owens K, Shi H, Murta SM, Vieira AC, Turco SJ, Tschudi C, Ullu E, Beverley SM (2010) Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog 6(10):e1001161. doi:10.1371/journal.ppat.1001161

    Article  PubMed  Google Scholar 

  • MacRae IJ, Zhou K, Doudna JA (2007) Structural determinants of RNA recognition and cleavage by Dicer. Nat Struct Mol Biol 14:934–940

    Article  PubMed  CAS  Google Scholar 

  • Maiti M, Lee HC, Liu Y (2007) QIP, a putative exonuclease, interacts with the Neurospora Argonaute protein and facilitates conversion of duplex siRNA into single strands. Genes Dev 21:590–600

    Article  PubMed  CAS  Google Scholar 

  • Martienssen RA, Zaratiegui M, Goto DB (2005) RNA interference and heterochromatin in the fission yeast Schizosaccharomyces pombe. Trends Genet 21:450–456

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi T, Takeuchi A, Siomi H, Siomi MC (2010) A direct role for Hsp90 in pre-RISC formation in Drosophila. Nat Struct Mol Biol 17:1024–1026

    Article  PubMed  CAS  Google Scholar 

  • Morris JC, Wang Z, Drew ME, Englund PT (2002) Glycolysis modulates trypanosome glycoprotein expression as revealed by an RNAi library. EMBO J 21:4429–4438

    Article  PubMed  CAS  Google Scholar 

  • Ngo H, Tschudi C, Gull K, Ullu E (1998) Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci USA 95:14687–14692

    Article  PubMed  CAS  Google Scholar 

  • Nilsson D, Gunasekera K, Mani J, Osteras M, Farinelli L, Baerlocher L, Roditi I, Ochsenreiter T (2010) Spliced leader trapping reveals widespread alternative splicing patterns in the highly dynamic transcriptome of Trypanosoma brucei. PLoS Pathog 6(8):e1001037. doi:10.1371/journal.ppat.1001037

    Article  PubMed  Google Scholar 

  • Obado SO, Taylor MC, Wilkinson SR, Bromley EV, Kelly JM (2005) Functional mapping of a trypanosome centromere by chromosome fragmentation identifies a 16-kb GC-rich transcriptional “strand-switch” domain as a major feature. Genome Res 15:36–43

    Article  PubMed  CAS  Google Scholar 

  • Patrick KL, Luz PM, Ruan JP, Shi H, Ullu E, Tschudi C (2008) Genomic rearrangements and transcriptional analysis of the spliced leader-associated retrotransposon in RNA interference-deficient Trypanosoma brucei. Mol Microbiol 67:435–447

    Article  PubMed  CAS  Google Scholar 

  • Patrick KL, Shi H, Kolev NG, Ersfeld K, Tschudi C, Ullu E (2009) Distinct and overlapping roles for two Dicer-like proteins in the RNA interference pathways of the ancient eukaryote Trypanosoma brucei. Proc Natl Acad Sci USA 106:17933–17938

    Article  PubMed  CAS  Google Scholar 

  • Robinson KA, Beverley SM (2003) Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leishmania. Mol Biochem Parasitol 128:217–228

    Article  PubMed  CAS  Google Scholar 

  • Schumann Burkard G, Jutzi P, Roditi I (2010) Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters. Mol Biochem Parasitol 175:91–94

    Article  PubMed  Google Scholar 

  • Shi H, Chamond N, Tschudi C, Ullu E (2004a) Selection and characterization of RNA interference-deficient trypanosomes impaired in target mRNA degradation. Eukaryot Cell 3:1445–1453

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Djikeng A, Tschudi C, Ullu E (2004b) Argonaute protein in the early divergent eukaryote Trypanosoma brucei: control of small interfering RNA accumulation and retroposon transcript abundance. Mol Cell Biol 24:420–427

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Ullu E, Tschudi C (2004c) Function of the trypanosome Argonaute 1 protein in RNA interference requires the N-terminal RGG domain and arginine 735 in the Piwi domain. J Biol Chem 279:49889–49893

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Tschudi C, Ullu E (2006a) Functional replacement of Trypanosoma brucei Argonaute by the human slicer Argonaute2. RNA 12:943–947

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Tschudi C, Ullu E (2006b) An unusual Dicer-like1 protein fuels the RNA interference pathway in Trypanosoma brucei. RNA 12:2063–2072

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Tschudi C, Ullu E (2007) Depletion of newly synthesized Argonaute1 impairs the RNAi response in Trypanosoma brucei. RNA 13:1132–1139

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Chamond N, Djikeng A, Tschudi C, Ullu E (2009) RNA interference in Trypanosoma brucei: the role of the amino-terminal RGG domain and the polyribosome association of Argonaute1. J Biol Chem 284:36511–36520

    Article  PubMed  CAS  Google Scholar 

  • Siegel TN, Hekstra DR, Wang X, Dewell S, Cross GA (2010) Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res 38:4946–4957

    Article  PubMed  CAS  Google Scholar 

  • Siomi H, Siomi MC (2009) On the road to reading the RNA-interference code. Nature 457:396–404

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam C, Veazey P, Redmond S, Hayes-Sinclair J, Chambers E, Carrington M, Gull K, Matthews K, Horn D, Field MC (2006) Chromosome-wide analysis of gene function by RNA interference in the African trypanosome. Eukaryot Cell 5:1539–1549

    Article  PubMed  CAS  Google Scholar 

  • Tolia NH, Joshua-Tor L (2007) Slicer and the Argonautes. Nat Chem Biol 3:36–43

    Article  PubMed  CAS  Google Scholar 

  • Ullu E, Tschudi C, Chakraborty T (2004) RNA interference in protozoan parasites. Cell Microbiol 6:509–519

    Article  PubMed  CAS  Google Scholar 

  • Vagin VV, Wohlschlegel J, Qu J, Jonsson Z, Huang X, Chuma S, Girard A, Sachidanandam R, Hannon GJ, Aravin AA (2009) Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev 23:1749–1762

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Sheng G, Juranek S, Tuschl T, Patel DJ (2008) Structure of the guide-strand-containing argonaute silencing complex. Nature 456:209–213

    Article  PubMed  CAS  Google Scholar 

  • Wirtz E, Clayton C (1995) Inducible gene expression in trypanosomes mediated by a prokaryotic repressor. Science 268:1179–1183

    Article  PubMed  CAS  Google Scholar 

  • Wirtz E, Leal S, Ochatt C, Cross GA (1999) A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol Biochem Parasitol 99:89–101

    Article  PubMed  CAS  Google Scholar 

  • Yoda M, Kawamata T, Paroo Z, Ye X, Iwasaki S, Liu Q, Tomari Y (2010) ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol 17:17–23

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Xiong H, Shan J, Xia X, Trudeau VL (2008) Functional insight into Maelstrom in the germline piRNA pathway: a unique domain homologous to the DnaQ-H 3′-5′ exonuclease, its lineage-specific expansion/loss and evolutionarily active site switch. Biol Direct 3:48

    Article  PubMed  Google Scholar 

Download references

Note added in proof

Our laboratory recently reported the characterization of two novel and essential RNAi factors, namely TbRIF4, a 3′–5′ exonuclease of the DnaQ superfamily with a critical role in the conversion of duplex siRNAs to the single-stranded form, and TbRIF5, a possible TbDCL1 cofactor (Barnes et al. 2012).

Acknowledgments  Research in the author’s laboratory was supported by Public Health Service grants AI28798 and AI56333 to E.U and AI43594 to C.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Ullu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Ullu, E., Kolev, N.G., Barnes, R.L., Tschudi, C. (2012). The RNA Interference Pathway in Trypanosoma brucei . In: Bindereif, A. (eds) RNA Metabolism in Trypanosomes. Nucleic Acids and Molecular Biology, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28687-2_8

Download citation

Publish with us

Policies and ethics