The RNA Interference Pathway in Trypanosoma brucei

Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 28)


In most eukaryotic cells, expression or delivery of long double-stranded RNA (dsRNA) signals the presence of foreign and/or potentially dangerous nucleic acids, such as viruses or transcripts derived from retroposons and transposons. As a consequence cells go on red alert and activate specific defense mechanisms to eliminate the invaders. Among such mechanisms is the RNA interference (RNAi) pathway, which is triggered by long dsRNAs, destroys target transcripts in a sequence-specific manner, and is widespread throughout eukaryotic evolution. Here we summarize our current understanding of the RNAi mechanism in Trypanosoma brucei, a protozoan parasite and early divergent eukaryote, and highlight similarities and differences with the RNAi machinery and its function in higher eukaryotes.


Argonaute Dicer RNAi genes siRNA 


Note added in proof

Our laboratory recently reported the characterization of two novel and essential RNAi factors, namely TbRIF4, a 3′–5′ exonuclease of the DnaQ superfamily with a critical role in the conversion of duplex siRNAs to the single-stranded form, and TbRIF5, a possible TbDCL1 cofactor (Barnes et al. 2012).

Acknowledgments  Research in the author’s laboratory was supported by Public Health Service grants AI28798 and AI56333 to E.U and AI43594 to C.T.


  1. Alsford S, Horn D (2008) Single-locus targeting constructs for reliable regulated RNAi and transgene expression in Trypanosoma brucei. Mol Biochem Parasitol 161:76–79PubMedCrossRefGoogle Scholar
  2. Alsford S, Kemp LE, Kawahara T, Horn D (2010) RNA interference, growth and differentiation appear normal in African trypanosomes lacking Tudor staphylococcal nuclease. Mol Biochem Parasitol 174:70–73PubMedCrossRefGoogle Scholar
  3. Ameres SL, Horwich MD, Hung JH, Xu J, Ghildiyal M, Weng Z, Zamore PD (2010) Target RNA-directed trimming and tailing of small silencing RNAs. Science 328:1534–1539PubMedCrossRefGoogle Scholar
  4. Aphasizheva I, Ringpis GE, Weng J, Gershon PD, Lathrop RH, Aphasizhev R (2009) Novel TUTase associates with an editosome-like complex in mitochondria of Trypanosoma brucei. RNA 15:1322–1337PubMedCrossRefGoogle Scholar
  5. Barnes RL, Shi H, Kolev NG, Tschudi C, Ullu E (2012) Comparative genomics reveals two novel RNAi factors in Trypanosoma brucei and provides insight into the core machinery. PLoS Pathog (in press)Google Scholar
  6. Best A, Handoko L, Schluter E, Goringer HU (2005) In vitro synthesized small interfering RNAs elicit RNA interference in African trypanosomes: an in vitro and in vivo analysis. J Biol Chem 280:20573–20579PubMedCrossRefGoogle Scholar
  7. Braun L, Cannella D, Ortet P, Barakat M, Sautel CF, Kieffer S, Garin J, Bastien O, Voinnet O, Hakimi MA (2010) A complex small RNA repertoire is generated by a plant/fungal-like machinery and effected by a metazoan-like Argonaute in the single-cell human parasite Toxoplasma gondii. PLoS Pathog 66(5):e1000920. doi: 10.1371/journal.ppat.1000920 CrossRefGoogle Scholar
  8. Cerutti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50:81–99PubMedCrossRefGoogle Scholar
  9. DaRocha WD, Otsu K, Teixeira SM, Donelson JE (2004) Tests of cytoplasmic RNA interference (RNAi) and construction of a tetracycline-inducible T7 promoter system in Trypanosoma cruzi. Mol Biochem Parasitol 133:175–186PubMedCrossRefGoogle Scholar
  10. Djikeng A, Shi H, Tschudi C, Ullu E (2001) RNA interference in Trypanosoma brucei: cloning of small interfering RNAs provides evidence for retroposon-derived 24-26-nucleotide RNAs. RNA 7:1522–1530PubMedGoogle Scholar
  11. Djikeng A, Shi H, Tschudi C, Shen S, Ullu E (2003) An siRNA ribonucleoprotein is found associated with polyribosomes in Trypanosoma brucei. RNA 9:802–808PubMedCrossRefGoogle Scholar
  12. Durand-Dubief M, Bastin P (2003) TbAGO1, an Argonaute protein required for RNA interference is involved in mitosis and chromosome segregation in Trypanosoma brucei. BMC Biol 1:2PubMedCrossRefGoogle Scholar
  13. Durand-Dubief M, Absalon S, Menzer L, Ngwabyt S, Ersfeld K, Bastin P (2007) The Argonaute protein TbAGO1 contributes to large and mini-chromosome segregation and is required for control of RIME retroposons and RHS pseudogene-associated transcripts. Mol Biochem Parasitol 156:144–153PubMedCrossRefGoogle Scholar
  14. Faehnle CR, Joshua-Tor L (2010) Argonaute MID domain takes centre stage. EMBO Rep 11:564–565PubMedCrossRefGoogle Scholar
  15. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811PubMedCrossRefGoogle Scholar
  16. Gupta SK, Hury A, Ziporen Y, Shi H, Ullu E, Michaeli S (2010) Small nucleolar RNA interference in Trypanosoma brucei: mechanism and utilization for elucidating the function of snoRNAs. Nucleic Acids Res 38:7236–7247PubMedCrossRefGoogle Scholar
  17. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952PubMedCrossRefGoogle Scholar
  18. Iwasaki S, Kobayashi M, Yoda M, Sakaguchi Y, Katsuma S, Suzuki T, Tomari Y (2010) Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell 39:292–299PubMedCrossRefGoogle Scholar
  19. Janzen CJ, van Deursen F, Shi H, Cross GA, Matthews KR, Ullu E (2006) Expression site silencing and life-cycle progression appear normal in Argonaute1-deficient Trypanosoma brucei. Mol Biochem Parasitol 149:102–107PubMedCrossRefGoogle Scholar
  20. Jaskiewicz L, Filipowicz W (2008) Role of Dicer in posttranscriptional RNA silencing. Curr Top Microbiol Immunol 320:77–97PubMedCrossRefGoogle Scholar
  21. Joshua-Tor L, Hannon GJ (2011) Ancestral roles of small RNAs: an ago-centric perspective. Cold Spring Harb Perspect Biol 3(10):a003772. doi: 10.1101/cshperspect.a003772 PubMedCrossRefGoogle Scholar
  22. Kirino Y, Kim N, de Planell-Saguer M, Khandros E, Chiorean S, Klein PS, Rigoutsos I, Jongens TA, Mourelatos Z (2009) Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat Cell Biol 11:652–658PubMedCrossRefGoogle Scholar
  23. Kolev NG, Franklin JB, Carmi S, Shi H, Michaeli S, Tschudi C (2010) The transcriptome of the human pathogen Trypanosoma brucei at single-nucleotide resolution. PLoS Pathog 6(9):e1001090. doi: 10.1371/journal.ppat.1001090 PubMedCrossRefGoogle Scholar
  24. Kurth HM, Mochizuki K (2009) 2′-O-methylation stabilizes Piwi-associated small RNAs and ensures DNA elimination in Tetrahymena. RNA 15:675–685PubMedCrossRefGoogle Scholar
  25. Li J, Yang Z, Yu B, Liu J, Chen X (2005) Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol 15:1501–1507PubMedCrossRefGoogle Scholar
  26. Liang XH, Liu Q, Michaeli S (2003) Small nucleolar RNA interference induced by antisense or double-stranded RNA in trypanosomatids. Proc Natl Acad Sci USA 100:7521–7526PubMedCrossRefGoogle Scholar
  27. Liu Q, Paroo Z (2010) Biochemical principles of small RNA pathways. Annu Rev Biochem 79:295–319PubMedCrossRefGoogle Scholar
  28. Liu Y, Ye X, Jiang F, Liang C, Chen D, Peng J, Kinch LN, Grishin NV, Liu Q (2009) C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Science 325:750–753PubMedCrossRefGoogle Scholar
  29. Lye LF, Owens K, Shi H, Murta SM, Vieira AC, Turco SJ, Tschudi C, Ullu E, Beverley SM (2010) Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog 6(10):e1001161. doi: 10.1371/journal.ppat.1001161 PubMedCrossRefGoogle Scholar
  30. MacRae IJ, Zhou K, Doudna JA (2007) Structural determinants of RNA recognition and cleavage by Dicer. Nat Struct Mol Biol 14:934–940PubMedCrossRefGoogle Scholar
  31. Maiti M, Lee HC, Liu Y (2007) QIP, a putative exonuclease, interacts with the Neurospora Argonaute protein and facilitates conversion of duplex siRNA into single strands. Genes Dev 21:590–600PubMedCrossRefGoogle Scholar
  32. Martienssen RA, Zaratiegui M, Goto DB (2005) RNA interference and heterochromatin in the fission yeast Schizosaccharomyces pombe. Trends Genet 21:450–456PubMedCrossRefGoogle Scholar
  33. Miyoshi T, Takeuchi A, Siomi H, Siomi MC (2010) A direct role for Hsp90 in pre-RISC formation in Drosophila. Nat Struct Mol Biol 17:1024–1026PubMedCrossRefGoogle Scholar
  34. Morris JC, Wang Z, Drew ME, Englund PT (2002) Glycolysis modulates trypanosome glycoprotein expression as revealed by an RNAi library. EMBO J 21:4429–4438PubMedCrossRefGoogle Scholar
  35. Ngo H, Tschudi C, Gull K, Ullu E (1998) Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci USA 95:14687–14692PubMedCrossRefGoogle Scholar
  36. Nilsson D, Gunasekera K, Mani J, Osteras M, Farinelli L, Baerlocher L, Roditi I, Ochsenreiter T (2010) Spliced leader trapping reveals widespread alternative splicing patterns in the highly dynamic transcriptome of Trypanosoma brucei. PLoS Pathog 6(8):e1001037. doi: 10.1371/journal.ppat.1001037 PubMedCrossRefGoogle Scholar
  37. Obado SO, Taylor MC, Wilkinson SR, Bromley EV, Kelly JM (2005) Functional mapping of a trypanosome centromere by chromosome fragmentation identifies a 16-kb GC-rich transcriptional “strand-switch” domain as a major feature. Genome Res 15:36–43PubMedCrossRefGoogle Scholar
  38. Patrick KL, Luz PM, Ruan JP, Shi H, Ullu E, Tschudi C (2008) Genomic rearrangements and transcriptional analysis of the spliced leader-associated retrotransposon in RNA interference-deficient Trypanosoma brucei. Mol Microbiol 67:435–447PubMedCrossRefGoogle Scholar
  39. Patrick KL, Shi H, Kolev NG, Ersfeld K, Tschudi C, Ullu E (2009) Distinct and overlapping roles for two Dicer-like proteins in the RNA interference pathways of the ancient eukaryote Trypanosoma brucei. Proc Natl Acad Sci USA 106:17933–17938PubMedCrossRefGoogle Scholar
  40. Robinson KA, Beverley SM (2003) Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leishmania. Mol Biochem Parasitol 128:217–228PubMedCrossRefGoogle Scholar
  41. Schumann Burkard G, Jutzi P, Roditi I (2010) Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters. Mol Biochem Parasitol 175:91–94PubMedCrossRefGoogle Scholar
  42. Shi H, Chamond N, Tschudi C, Ullu E (2004a) Selection and characterization of RNA interference-deficient trypanosomes impaired in target mRNA degradation. Eukaryot Cell 3:1445–1453PubMedCrossRefGoogle Scholar
  43. Shi H, Djikeng A, Tschudi C, Ullu E (2004b) Argonaute protein in the early divergent eukaryote Trypanosoma brucei: control of small interfering RNA accumulation and retroposon transcript abundance. Mol Cell Biol 24:420–427PubMedCrossRefGoogle Scholar
  44. Shi H, Ullu E, Tschudi C (2004c) Function of the trypanosome Argonaute 1 protein in RNA interference requires the N-terminal RGG domain and arginine 735 in the Piwi domain. J Biol Chem 279:49889–49893PubMedCrossRefGoogle Scholar
  45. Shi H, Tschudi C, Ullu E (2006a) Functional replacement of Trypanosoma brucei Argonaute by the human slicer Argonaute2. RNA 12:943–947PubMedCrossRefGoogle Scholar
  46. Shi H, Tschudi C, Ullu E (2006b) An unusual Dicer-like1 protein fuels the RNA interference pathway in Trypanosoma brucei. RNA 12:2063–2072PubMedCrossRefGoogle Scholar
  47. Shi H, Tschudi C, Ullu E (2007) Depletion of newly synthesized Argonaute1 impairs the RNAi response in Trypanosoma brucei. RNA 13:1132–1139PubMedCrossRefGoogle Scholar
  48. Shi H, Chamond N, Djikeng A, Tschudi C, Ullu E (2009) RNA interference in Trypanosoma brucei: the role of the amino-terminal RGG domain and the polyribosome association of Argonaute1. J Biol Chem 284:36511–36520PubMedCrossRefGoogle Scholar
  49. Siegel TN, Hekstra DR, Wang X, Dewell S, Cross GA (2010) Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res 38:4946–4957PubMedCrossRefGoogle Scholar
  50. Siomi H, Siomi MC (2009) On the road to reading the RNA-interference code. Nature 457:396–404PubMedCrossRefGoogle Scholar
  51. Subramaniam C, Veazey P, Redmond S, Hayes-Sinclair J, Chambers E, Carrington M, Gull K, Matthews K, Horn D, Field MC (2006) Chromosome-wide analysis of gene function by RNA interference in the African trypanosome. Eukaryot Cell 5:1539–1549PubMedCrossRefGoogle Scholar
  52. Tolia NH, Joshua-Tor L (2007) Slicer and the Argonautes. Nat Chem Biol 3:36–43PubMedCrossRefGoogle Scholar
  53. Ullu E, Tschudi C, Chakraborty T (2004) RNA interference in protozoan parasites. Cell Microbiol 6:509–519PubMedCrossRefGoogle Scholar
  54. Vagin VV, Wohlschlegel J, Qu J, Jonsson Z, Huang X, Chuma S, Girard A, Sachidanandam R, Hannon GJ, Aravin AA (2009) Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev 23:1749–1762PubMedCrossRefGoogle Scholar
  55. Wang Y, Sheng G, Juranek S, Tuschl T, Patel DJ (2008) Structure of the guide-strand-containing argonaute silencing complex. Nature 456:209–213PubMedCrossRefGoogle Scholar
  56. Wirtz E, Clayton C (1995) Inducible gene expression in trypanosomes mediated by a prokaryotic repressor. Science 268:1179–1183PubMedCrossRefGoogle Scholar
  57. Wirtz E, Leal S, Ochatt C, Cross GA (1999) A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol Biochem Parasitol 99:89–101PubMedCrossRefGoogle Scholar
  58. Yoda M, Kawamata T, Paroo Z, Ye X, Iwasaki S, Liu Q, Tomari Y (2010) ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol 17:17–23PubMedCrossRefGoogle Scholar
  59. Zhang D, Xiong H, Shan J, Xia X, Trudeau VL (2008) Functional insight into Maelstrom in the germline piRNA pathway: a unique domain homologous to the DnaQ-H 3′-5′ exonuclease, its lineage-specific expansion/loss and evolutionarily active site switch. Biol Direct 3:48PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Internal MedicineYale University School of MedicineNew HavenUSA
  2. 2.Department of Cell BiologyYale University School of MedicineNew HavenUSA
  3. 3.Division of Epidemiology of Microbial DiseasesYale University School of Public HealthNew HavenUSA

Personalised recommendations