mRNA Turnover in Trypanosomes

Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 28)


Most kinetoplastid mRNAs are synthesised by RNA polymerase II, then trans spliced, polyadenylated, and exported from the nucleus. The polycistronic nature of kinetoplastid transcription, however, means that—with a few exceptions—the amount of mRNA is determined by post-transcriptionally. Once in the cytoplasm, the amount of mRNA is determined by the rate of mRNA degradation and the amount of protein by the rates of translation initiation, elongation, and protein turnover. In many cases, regulation of mRNA turnover has been found to play a dominant role. This review discusses the mechanisms of mRNA degradation in kinetoplastids, and how that degradation is controlled.


mRNA Degradation Stress Granule Premature Termination Codon Procyclic Form CCCH Zinc Finger 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Work in my laboratory is supported by the Land of Baden-Württemberg and the Deutsche Forschungsgemeinschaft.


  1. Abanades DR, Ramirez L, Iborra S, Soteriadou K, Gonzalez VM, Bonay P, Alonso C, Soto M (2009) Key role of the 3′ untranslated region in the cell cycle regulated expression of the Leishmania infantum histone H2A genes: minor synergistic effect of the 5′ untranslated region. BMC Mol Biol 10:48PubMedCrossRefGoogle Scholar
  2. Alves L, Ávila A, Correa A, Holetz F, Mansur F, Manque P, de Menezes J, Buck G, Krieger M, Goldenberg S (2010) Proteomic analysis reveals the dynamic association of proteins with translated mRNAs in Trypanosoma cruzi. Gene 452:72–78PubMedCrossRefGoogle Scholar
  3. Archer SK, van Luu D, de Queiroz R, Brems S, Clayton CE (2009) Trypanosoma brucei PUF9 regulates mRNAs for proteins involved in replicative processes over the cell cycle. PLoS Pathog 5:e1000565PubMedCrossRefGoogle Scholar
  4. Avliyakulov N, Hines J, Ray D (2003) Sequence elements in both the intergenic space and the 3′ untranslated region of the Crithidia fasciculata KAP3 gene are required for cell cycle regulation of KAP3 mRNA. Eukaryot Cell 2:671–677PubMedCrossRefGoogle Scholar
  5. Banerjee H, Palenchar J, Lukaszewicz M, Bojarska E, Stepinski J, Jemielity J, Guranowski A, Ng S, Wah D, Darzynkiewicz E, Bellofatto V (2009) Identification of the HIT-45 protein from Trypanosoma brucei as an FHIT protein/dinucleoside triphosphatase: substrate specificity studies on the recombinant and endogenous proteins. RNA 15:1554–1564PubMedCrossRefGoogle Scholar
  6. Bass KE, Wang CC (1992) Transient inhibition of protein synthesis accompanies differentiation of Trypanosoma brucei from bloodstream from procyclic form. Mol Biochem Parasitol 56:129–140PubMedCrossRefGoogle Scholar
  7. Benz C, Mulindwa J, Ouna B, Clayton C (2011) The Trypanosoma brucei zinc finger protein ZC3H18 is involved in differentiation. Mol Biochem Parasitol 177:148–151PubMedCrossRefGoogle Scholar
  8. Bonneau F, Basquin J, Ebert J, Lorentzen E, Conti E (2009) The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 139:547–559PubMedCrossRefGoogle Scholar
  9. Brandt F, Carlson L, Hartl F, Baumeister W, Grünewald K (2010) The three-dimensional organization of polyribosomes in intact human cells. Mol Cell 39:560–569PubMedCrossRefGoogle Scholar
  10. Brecht M, Parsons M (1998) Changes in polysome profiles accompany trypanosome development. Mol Biochem Parasitol 97:189–198PubMedCrossRefGoogle Scholar
  11. Bringaud F, Müller M, Cerqueira G, Smith M, Rochette A, El-Sayed N, Papadopoulou B, Ghedin E (2007) Members of a large retroposon family are determinants of post-transcriptional gene expression in Leishmania. PLOS Pathog 3:e136CrossRefGoogle Scholar
  12. Buchan J, Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36:932–941PubMedCrossRefGoogle Scholar
  13. Caro F, Bercovich N, Atorrasagasti C, Levin M, Vazquez M (2006) Trypanosoma cruzi: analysis of the complete PUF RNA-binding protein family. Exp Parasitol 113:112–124PubMedCrossRefGoogle Scholar
  14. Carter N, Yates P, Gessford S, Galagan S, Landfear S, Ullman B (2010) Adaptive responses to purine starvation in Leishmania donovani. Mol Microbiol 78:92–107PubMedGoogle Scholar
  15. Cassola A, Frasch A (2009) An RNA recognition motif mediates the nucleocytoplasmic transport of a trypanosome RNA-binding protein. J Biol Chem 284:35015–35028PubMedCrossRefGoogle Scholar
  16. Cassola A, De Gaudenzi J, Frasch A (2007) Recruitment of mRNAs to cytoplasmic ribonucleoprotein granules in trypanosomes. Mol Microbiol 65:655–670PubMedCrossRefGoogle Scholar
  17. Clayton C, Estevez A (2010) The exosomes of trypanosomes and other protists. In: Jensen T (ed) The exosome. Landes Bioscience, Austin, TXGoogle Scholar
  18. Clayton C, Shapira M (2007) Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol 156:93–101PubMedCrossRefGoogle Scholar
  19. Colasante C, Robles A, Li C-H, Schwede A, Benz C, Voncken F, Guilbride DL, Clayton C (2007) Regulated expression of glycosomal phosphoglycerate kinase in Trypanosoma brucei. Mol Biochem Parasitol 151:193–204PubMedCrossRefGoogle Scholar
  20. Cristodero M, Böttcher B, Diepholz M, Scheffzeck K, Clayton C (2008) The exosome of Leishmania tarentolae: purification and structural analysis by electron microscopy. Mol Biochem Parasitol 159:24–29PubMedCrossRefGoogle Scholar
  21. D’Orso I, Frasch ACC (2001) Functionally different AU- and G-rich cis elements confer developmentally-regulated mRNA stability by interaction with specific RNA-binding proteins. J Biol Chem 276:15783–15793PubMedCrossRefGoogle Scholar
  22. D’Orso I, Frasch ACC (2002) TcUBP-1, an mRNA destabilizing factor from trypanosomes, homodimerizes and interacts with novel AU-rich element- and poly(A)-binding proteins forming a ribonucleoprotein complex. J Biol Chem 277:50520–50528PubMedCrossRefGoogle Scholar
  23. Dallagiovanna B, Perez L, Sotelo-Silveira J, Smircich P, Duhagon MA, Garat B (2005) Trypanosoma cruzi: molecular characterization of TcPUF6, a Pumilio protein. Exp Parasitol 109:260–264PubMedCrossRefGoogle Scholar
  24. Dallagiovanna B, Correa A, Probst C, Holetz F, Smircich P, de Aguiar A, Mansur F, Vieira da Silva C, Mortara R, Garat B, Buck G, Goldenberg S, Krieger M (2008) Functional genomic characterization of mRNAs associated with TcPUF6, a pumilio-like protein from Trypanosoma cruzi. J Biol Chem 283:8266–8273PubMedCrossRefGoogle Scholar
  25. De Gaudenzi JG, Frasch ACC, Clayton C (2006) RNA-binding domain proteins in kinetoplastids: a comparative analysis. Eukaryot Cell 4:2106–2114CrossRefGoogle Scholar
  26. Delhi P, Queiroz R, Inchaustegui D, Carrington M, Clayton C (2011) Is there a classical nonsense-mediated decay pathway in trypanosomes? PLoS One 6:e25112PubMedCrossRefGoogle Scholar
  27. Droll D, Archer S, Fenn K, Delhi P, Matthews K, Clayton C (2010) The trypanosome Pumilio-domain protein PUF7 associates with a nuclear cyclophilin and is involved in ribosomal RNA maturation. FEBS Lett 84:1156–1162CrossRefGoogle Scholar
  28. Estévez A (2008) The RNA-binding protein TbDRBD3 regulates the stability of a specific subset of mRNAs in trypanosomes. Nucleic Acids Res 36:4573–4586PubMedCrossRefGoogle Scholar
  29. Estévez A, Kempf T, Clayton CE (2001) The exosome of Trypanosoma brucei. EMBO J 20:3831–3839PubMedCrossRefGoogle Scholar
  30. Estévez AM, Lehner B, Sanderson CM, Ruppert T, Clayton C (2003) The roles of inter-subunit interactions in exosome stability. J Biol Chem 278:34943–34951PubMedCrossRefGoogle Scholar
  31. Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E (2007) P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol 27:3970–3981PubMedCrossRefGoogle Scholar
  32. Foat B, Houshmandi S, Olivas W, Bussemaker H (2005) Profiling condition-specific, genome-wide regulation of mRNA stability in yeast. Proc Natl Acad Sci U S A 102:17675–17680PubMedCrossRefGoogle Scholar
  33. Gebauer F, Hentze M (2004) Molecular mechanisms of translation control. Nat Rev Mol Cell Biol 5:827–835PubMedCrossRefGoogle Scholar
  34. Haanstra J, Stewart M, Luu V-D, van Tuijl A, Westerhoff H, Clayton C, Bakker B (2008) Control and regulation of gene expression: quantitative analysis of the expression of phosphoglycerate kinase in bloodstream form Trypanosoma brucei. J Biol Chem 283:2495–2507PubMedCrossRefGoogle Scholar
  35. Haanstra J, Kerkhoven E, van Tuijl A, Blits M, Wurst M, van Nuland R, Albert M-A, Michels P, Bouwman J, Clayton C, Westerhoff H, Bakker B (2011) A domino effect in drug action: from metabolic assault towards parasite differentiation. Mol Microbiol 79:94–108PubMedCrossRefGoogle Scholar
  36. Haile S, Papadopoulou B (2007) Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Curr Opin Microbiol 10:569–577PubMedCrossRefGoogle Scholar
  37. Haile S, Estévez AM, Clayton C (2003) A role for the exosome in the initiation of degradation of unstable mRNAs. RNA 9:1491–1501PubMedCrossRefGoogle Scholar
  38. Haile S, Cristodero M, Clayton C, Estévez A (2007) The subcellular localisation of trypanosome RRP6 and its association with the exosome. Mol Biochem Parasitol 151:52–58PubMedCrossRefGoogle Scholar
  39. Haile S, Dupe A, Papadopoulou B (2008) Deadenylation-independent stage-specific mRNA degradation in Leishmania. Nucleic Acids Res 36:1634–1644PubMedCrossRefGoogle Scholar
  40. Hartmann C, Clayton C (2008) Regulation of a transmembrane protein gene family by the small RNA binding proteins TbUBP1 and TbUBP2. Mol Biochem Parasitol 157:112–115PubMedCrossRefGoogle Scholar
  41. Hendriks EF, Matthews KR (2005) Disruption of the developmental programme of Trypanosoma brucei by genetic ablation of TbZFP1, a differentiation-enriched CCCH protein. Mol Microbiol 57:706–716PubMedCrossRefGoogle Scholar
  42. Hendriks EF, Robinson DR, Hinkins M, Matthews KR (2001) A novel CCCH protein which modulates differentiation of Trypanosoma brucei to its procyclic form. EMBO J 20:6700–6711PubMedCrossRefGoogle Scholar
  43. Holetz F, Correa A, Avila A, Nakamura C, Krieger M, Goldenberg S (2007) Evidence of P-body-like structures in Trypanosoma cruzi. Biochem Biophys Res Commun 356:1062–1067PubMedCrossRefGoogle Scholar
  44. Holetz F, Alves L, Probst C, Dallagiovanna B, Marchini F, Manque P, Buck G, Krieger M, Correa A, Goldenberg S (2010) Protein and mRNA content of TcDHH1-containing mRNPs in Trypanosoma cruzi. FEBS J 277:3415–3426PubMedCrossRefGoogle Scholar
  45. Houseley J, Tollervey D (2009) The many pathways of RNA degradation. Cell 136:763–776PubMedCrossRefGoogle Scholar
  46. Hu W, Petzold C, Coller J, Baker K (2010) Nonsense-mediated mRNA decapping occurs on polyribosomes in Saccharomyces cerevisiae. Nat Struct Mol Biol 17:244–247PubMedCrossRefGoogle Scholar
  47. Jackson R, Hellen C, Pestova T (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 10:113–127CrossRefGoogle Scholar
  48. Jensen B, Sivam D, Kifer C, Myler P, Parsons M (2009) Widespread variation in transcript abundance within and across developmental stages of Trypanosoma brucei. BMC Genomics 10:482PubMedCrossRefGoogle Scholar
  49. Kabani S, Fenn K, Ross A, Ivens A, Smith T, Ghazal P, Matthews K (2009) Genome-wide expression profiling of in vivo-derived bloodstream parasite stages and dynamic analysis of mRNA alterations during synchronous differentiation in Trypanosoma brucei. BMC Genomics 10:427PubMedCrossRefGoogle Scholar
  50. Kielkopf CL, Lucke S, Green MR (2004) U2AF homology motifs: protein recognition in the RRM world. Genes Dev 18:1513–1526PubMedCrossRefGoogle Scholar
  51. Koumandou V, Natesan S, Sergeenko T, Field M (2008) The trypanosome transcriptome is remodelled during differentiation but displays limited responsiveness within life stages. BMC Genomics 9:e298CrossRefGoogle Scholar
  52. Kramer S, Queiroz R, Ellis L, Webb H, Hoheisel J, Clayton C, Carrington M (2008) Stress granules and the heat shock response in Trypanosoma brucei. J Cell Sci 121:3002–3014PubMedCrossRefGoogle Scholar
  53. Kramer S, Kimblin N, Carrington M (2010a) Genome-wide in silico screen for CCCH-type zinc finger proteins of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. BMC Genomics 11:283PubMedCrossRefGoogle Scholar
  54. Kramer S, Queiroz R, Ellis L, Hoheisel J, Clayton C, Carrington M (2010b) The RNA helicase DHH1 is central to correct expression of many developmentally regulated mRNAs in trypanosomes. J Cell Sci 123:699–711PubMedCrossRefGoogle Scholar
  55. Li C-H, Irmer H, Gudjonsdottir-Planck D, Freese S, Salm H, Haile S, Estévez AM, Clayton CE (2006) Roles of a Trypanosoma brucei 5′→3′ exoribonuclease homologue in mRNA degradation. RNA 12:2171–2186PubMedCrossRefGoogle Scholar
  56. Ling A, Trotter J, Hendriks E (2011) A zinc finger protein, TbZC3H20, stabilises two developmentally regulated mRNAs in trypanosomes. J Biol Chem 286:20152–20162PubMedCrossRefGoogle Scholar
  57. Luu VD, Brems S, Hoheisel J, Burchmore R, Guilbride D, Clayton C (2006) Functional analysis of Trypanosoma brucei PUF1. Mol Biochem Parasitol 150:340–349PubMedCrossRefGoogle Scholar
  58. Manful T, Fadda A, Clayton C (2011) The role of the 5′-3′ exoribonuclease XRNA in transcriptome-wide mRNA degradation. RNA 17:2039–2047PubMedCrossRefGoogle Scholar
  59. Milone J, Wilusz J, Bellofatto V (2002) Identification of mRNA decapping activities and an ARE-regulated 3′ to 5′ exonuclease activity in trypanosome extracts. Nucleic Acids Res 30:4040–4050PubMedCrossRefGoogle Scholar
  60. Minning T, Weatherly D, Jr A, Orlando R, Tarleton R (2009) The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi. BMC Genomics 10:370PubMedCrossRefGoogle Scholar
  61. Mishra KK, Holzer TR, Moore LL, LeBowitz JH (2003) A negative regulatory element controls mRNA abundance of the Leishmania mexicana Paraflagellar rod gene PFR2. Eukaryot Cell 2:1009–1017PubMedCrossRefGoogle Scholar
  62. Mittra B, Ray DS (2004) Presence of a poly(A) binding protein and two proteins with cell cycle-dependent phosphorylation in Crithidia fasciculata mRNA cycling sequence binding protein II. Eukaryot Cell 3:1185–1197PubMedCrossRefGoogle Scholar
  63. Mittra B, Sinha K, Hines J, Ray D (2003) Presence of multiple mRNA cycling sequence element-binding proteins in Crithidia fasciculata. J Biol Chem 278:26564–26571PubMedCrossRefGoogle Scholar
  64. Muller M, Padmanabhan PK, Papadopoulou B (2010a) Selective inactivation of SIDER2 retroposon-mediated mRNA decay contributes to stage- and species-specific gene expression in Leishmania. Mol Microbiol 77:471–491PubMedCrossRefGoogle Scholar
  65. Muller M, Padmanabhan PK, Rochette A, Mukherjee D, Smith M, Dumas C, Papadopoulou B (2010b) Rapid decay of unstable Leishmania mRNAs bearing a conserved retroposon signature 3′-UTR motif is initiated by a site-specific endonucleolytic cleavage without prior deadenylation. Nucleic Acids Res 38:5867–5883PubMedCrossRefGoogle Scholar
  66. Nissan T, Rajyaguru P, She M, Song H, Parker R (2010) Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol Cell 39:773–783PubMedCrossRefGoogle Scholar
  67. Noe G, De Gaudenzi J, Frasch A (2008) Functionally related transcripts have common RNA motifs for specific RNA-binding proteins in trypanosomes. BMC Mol Biol 9:107PubMedCrossRefGoogle Scholar
  68. Ortiz D, Raquel Valdés R, Sanchez M, Hayenga J, Elya C, Detke S, Landfear S (2010) Purine restriction induces pronounced translational upregulation of the NT1 adenosine/pyrimidine nucleoside transporter in Leishmania major. Mol Microbiol 78:108–118PubMedGoogle Scholar
  69. Ouellette M, Papadopoulou B (2009) Coordinated gene expression by post-transcriptional regulons in African trypanosomes. J Biol 8:100PubMedCrossRefGoogle Scholar
  70. Park S, Myszka DG, Yu M, Littler SJ, Laird-Offringa IA (2000) HuD RNA recognition motifs play distinct roles in the formation of a stable complex with AU-rich RNA. Mol Cell Biol 20:4765–4772PubMedCrossRefGoogle Scholar
  71. Paterou A, Walrad P, Craddy P, Fenn K, Matthews K (2006) Identification and stage-specific association with the translational apparatus of TbZFP3, a ccch protein that promotes trypanosome life cycle development. J Biol Chem 281:39002–39013PubMedCrossRefGoogle Scholar
  72. Pays E, Hanocq-Quertier J, Hanocq F, Van Assel S, Nolan D, Rolin S (1993) Abrupt RNA changes precede the first cell division during the differentiation of Trypanosoma brucei bloodstream forms into procyclic forms in vitro. Mol Biochem Parasitol 61:107–114PubMedCrossRefGoogle Scholar
  73. Queiroz R, Benz C, Fellenberg K, Hoheisel J, Clayton C (2009) Transcriptome analysis of differentiating trypanosomes reveals the existence of multiple post-transcriptional regulons. BMC Genomics 10:495PubMedCrossRefGoogle Scholar
  74. Quijada L, Hartmann C, Guerra-Giraldez C, Drozdz M, Irmer H, Clayton CE (2002) Expression of the human RNA-binding protein HuR in Trypanosoma brucei induces differentiation-related changes in the abundance of developmentally-regulated mRNAs. Nucleic Acids Res 30:1–11CrossRefGoogle Scholar
  75. Rochette A, Raymond F, Corbeil J, Ouellette M, Papadopoulou B (2009) Whole-genome comparative RNA expression profiling of axenic and intracellular amastigote forms of Leishmania infantum. Mol Biochem Parasitol 165:32–47PubMedCrossRefGoogle Scholar
  76. Rodrigues DC, Silva R, Rondinelli E, Urmenyi TP (2010) Trypanosoma cruzi: modulation of HSP70 mRNA stability by untranslated regions during heat shock. Exp Parasitol 126:245–253PubMedCrossRefGoogle Scholar
  77. Saint-Georges Y, Garcia M, Delaveau T, Jourdren L, Le Crom S, Lemoine S, Tanty V, Devaux F, Jacq C (2008) Yeast mitochondrial biogenesis: a role for the PUF RNA-binding protein Puf3p in mRNA localization. PLoS One 3:e2293PubMedCrossRefGoogle Scholar
  78. Schneider C, Leung E, Brown J, Tollervey D (2009) The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res 37:1127–1140PubMedCrossRefGoogle Scholar
  79. Schwede A, Ellis L, Luther J, Carrington M, Stoecklin G, Clayton C (2008) A role for Caf1 in mRNA deadenylation and decay in trypanosomes and human cells. Nucleic Acids Res 36:3374–3388PubMedCrossRefGoogle Scholar
  80. Schwede A, Manful T, Jha B, Helbig C, Bercovich N, Stewart M, Clayton C (2009) The role of deadenylation in the degradation of unstable mRNAs in trypanosomes. Nucleic Acids Res 37:5511–5528PubMedCrossRefGoogle Scholar
  81. Siegel T, Hekstra D, Wang X, Dewell S, Cross G (2010) Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res 38:4946–4957PubMedCrossRefGoogle Scholar
  82. Staals R, Bronkhorst A, Schilders G, Slomovic S, Schuster G, Heck A, Raijmakers R, Pruijn G (2010) Dis3-like 1: a novel exoribonuclease associated with the human exosome. EMBO J 29:2358–2367PubMedCrossRefGoogle Scholar
  83. Stalder L, Mühlemann O (2008) The meaning of nonsense. Trends Cell Biol 18:315–321PubMedCrossRefGoogle Scholar
  84. Stern M, Gupta S, Salmon-Divon M, Haham T, Barda O, Levi S, Wachtel C, Nilsen T, Michaeli S (2009) Multiple roles for polypyrimidine tract binding (PTB) proteins in trypanosome RNA metabolism. RNA 15:648–665PubMedCrossRefGoogle Scholar
  85. Temme C, Zhang L, Kremmer E, Ihling C, Chartier A, Sinz A, Simonelig M, Wahle E (2010) Subunits of the Drosophila CCR4-NOT complex and their roles in mRNA deadenylation. RNA 16:1356–1370PubMedCrossRefGoogle Scholar
  86. Thomson E, Rappsilber J, Tollervey D (2007) Nop9 is an RNA binding protein present in pre-40S ribosomes and required for 18S rRNA synthesis in yeast. RNA 13:2165–2174PubMedCrossRefGoogle Scholar
  87. Tomecki R, Kristiansen M, Lykke-Andersen S, Chlebowski A, Larsen K, Szczesny R, Drazkowska K, Pastula A, Andersen J, Stepien P, Dziembowski A, Jensen T (2010) The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J 29:2342–2357PubMedCrossRefGoogle Scholar
  88. Utter C, Garcia S, Milone J, Bellofatto V (2011) Poly(A)-specific ribonuclease (PARN-1) function in stage-specific mRNA turnover in Trypanosoma brucei. Eukaryot Cell 10:1230–1240PubMedCrossRefGoogle Scholar
  89. Vassella E, Den Abbeele J, Butikofer P, Renggli CK, Furger A, Brun R, Roditi I (2000) A major surface glycoprotein of Trypanosoma brucei is expressed transiently during development and can be regulated post-transcriptionally by glycerol or hypoxia. Genes Dev 14:615–626PubMedGoogle Scholar
  90. Vassella E, Probst M, Schneider A, Studer E, Renggli C, Roditi I (2004) Expression of a major surface protein of Trypanosoma brucei insect forms is controlled by the activity of mitochondrial enzymes. Mol Biol Cell 15:3986–3993PubMedCrossRefGoogle Scholar
  91. Walrad P, Paterou A, Acosta-Serrano A, Matthews K (2009) Differential trypanosome surface coat regulation by a CCCH protein that co-associates with procyclin mRNA cis-elements. PLoS Pathog 5:e1000317PubMedCrossRefGoogle Scholar
  92. Wang X, Tanaka Hall T (2001) Structural basis for recognition of AU-rich element RNA by the HuD protein. Nat Struct Biol 8:141–145PubMedCrossRefGoogle Scholar
  93. Webb H, Burns R, Ellis L, Kimblin N, Carrington M (2005) Developmentally regulated instability of the GPI-PLC mRNA is dependent on a short-lived protein factor. Nucleic Acids Res 33:1503–1512PubMedCrossRefGoogle Scholar
  94. Wurst M, Robles A, Po J, Luu V, Brems S, Marentije M, Stoitsova S, Quijada L, Hoheisel J, Stewart M, Hartmann C, Clayton C (2009) An RNAi screen of the RRM-domain proteins of Trypanosoma brucei. Mol Biochem Parasitol 163:61–65PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Zentrum für Molekulare Biologie ZMBHHeidelbergGermany

Personalised recommendations