Skip to main content

mRNA Turnover in Trypanosomes

  • Chapter
  • First Online:
RNA Metabolism in Trypanosomes

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 28))

Abstract

Most kinetoplastid mRNAs are synthesised by RNA polymerase II, then trans spliced, polyadenylated, and exported from the nucleus. The polycistronic nature of kinetoplastid transcription, however, means that—with a few exceptions—the amount of mRNA is determined by post-transcriptionally. Once in the cytoplasm, the amount of mRNA is determined by the rate of mRNA degradation and the amount of protein by the rates of translation initiation, elongation, and protein turnover. In many cases, regulation of mRNA turnover has been found to play a dominant role. This review discusses the mechanisms of mRNA degradation in kinetoplastids, and how that degradation is controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abanades DR, Ramirez L, Iborra S, Soteriadou K, Gonzalez VM, Bonay P, Alonso C, Soto M (2009) Key role of the 3′ untranslated region in the cell cycle regulated expression of the Leishmania infantum histone H2A genes: minor synergistic effect of the 5′ untranslated region. BMC Mol Biol 10:48

    Article  PubMed  Google Scholar 

  • Alves L, Ávila A, Correa A, Holetz F, Mansur F, Manque P, de Menezes J, Buck G, Krieger M, Goldenberg S (2010) Proteomic analysis reveals the dynamic association of proteins with translated mRNAs in Trypanosoma cruzi. Gene 452:72–78

    Article  PubMed  CAS  Google Scholar 

  • Archer SK, van Luu D, de Queiroz R, Brems S, Clayton CE (2009) Trypanosoma brucei PUF9 regulates mRNAs for proteins involved in replicative processes over the cell cycle. PLoS Pathog 5:e1000565

    Article  PubMed  Google Scholar 

  • Avliyakulov N, Hines J, Ray D (2003) Sequence elements in both the intergenic space and the 3′ untranslated region of the Crithidia fasciculata KAP3 gene are required for cell cycle regulation of KAP3 mRNA. Eukaryot Cell 2:671–677

    Article  PubMed  CAS  Google Scholar 

  • Banerjee H, Palenchar J, Lukaszewicz M, Bojarska E, Stepinski J, Jemielity J, Guranowski A, Ng S, Wah D, Darzynkiewicz E, Bellofatto V (2009) Identification of the HIT-45 protein from Trypanosoma brucei as an FHIT protein/dinucleoside triphosphatase: substrate specificity studies on the recombinant and endogenous proteins. RNA 15:1554–1564

    Article  PubMed  CAS  Google Scholar 

  • Bass KE, Wang CC (1992) Transient inhibition of protein synthesis accompanies differentiation of Trypanosoma brucei from bloodstream from procyclic form. Mol Biochem Parasitol 56:129–140

    Article  PubMed  CAS  Google Scholar 

  • Benz C, Mulindwa J, Ouna B, Clayton C (2011) The Trypanosoma brucei zinc finger protein ZC3H18 is involved in differentiation. Mol Biochem Parasitol 177:148–151

    Article  PubMed  CAS  Google Scholar 

  • Bonneau F, Basquin J, Ebert J, Lorentzen E, Conti E (2009) The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 139:547–559

    Article  PubMed  CAS  Google Scholar 

  • Brandt F, Carlson L, Hartl F, Baumeister W, Grünewald K (2010) The three-dimensional organization of polyribosomes in intact human cells. Mol Cell 39:560–569

    Article  PubMed  CAS  Google Scholar 

  • Brecht M, Parsons M (1998) Changes in polysome profiles accompany trypanosome development. Mol Biochem Parasitol 97:189–198

    Article  PubMed  CAS  Google Scholar 

  • Bringaud F, Müller M, Cerqueira G, Smith M, Rochette A, El-Sayed N, Papadopoulou B, Ghedin E (2007) Members of a large retroposon family are determinants of post-transcriptional gene expression in Leishmania. PLOS Pathog 3:e136

    Article  Google Scholar 

  • Buchan J, Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36:932–941

    Article  PubMed  CAS  Google Scholar 

  • Caro F, Bercovich N, Atorrasagasti C, Levin M, Vazquez M (2006) Trypanosoma cruzi: analysis of the complete PUF RNA-binding protein family. Exp Parasitol 113:112–124

    Article  PubMed  CAS  Google Scholar 

  • Carter N, Yates P, Gessford S, Galagan S, Landfear S, Ullman B (2010) Adaptive responses to purine starvation in Leishmania donovani. Mol Microbiol 78:92–107

    PubMed  CAS  Google Scholar 

  • Cassola A, Frasch A (2009) An RNA recognition motif mediates the nucleocytoplasmic transport of a trypanosome RNA-binding protein. J Biol Chem 284:35015–35028

    Article  PubMed  CAS  Google Scholar 

  • Cassola A, De Gaudenzi J, Frasch A (2007) Recruitment of mRNAs to cytoplasmic ribonucleoprotein granules in trypanosomes. Mol Microbiol 65:655–670

    Article  PubMed  CAS  Google Scholar 

  • Clayton C, Estevez A (2010) The exosomes of trypanosomes and other protists. In: Jensen T (ed) The exosome. Landes Bioscience, Austin, TX

    Google Scholar 

  • Clayton C, Shapira M (2007) Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol 156:93–101

    Article  PubMed  CAS  Google Scholar 

  • Colasante C, Robles A, Li C-H, Schwede A, Benz C, Voncken F, Guilbride DL, Clayton C (2007) Regulated expression of glycosomal phosphoglycerate kinase in Trypanosoma brucei. Mol Biochem Parasitol 151:193–204

    Article  PubMed  CAS  Google Scholar 

  • Cristodero M, Böttcher B, Diepholz M, Scheffzeck K, Clayton C (2008) The exosome of Leishmania tarentolae: purification and structural analysis by electron microscopy. Mol Biochem Parasitol 159:24–29

    Article  PubMed  CAS  Google Scholar 

  • D’Orso I, Frasch ACC (2001) Functionally different AU- and G-rich cis elements confer developmentally-regulated mRNA stability by interaction with specific RNA-binding proteins. J Biol Chem 276:15783–15793

    Article  PubMed  Google Scholar 

  • D’Orso I, Frasch ACC (2002) TcUBP-1, an mRNA destabilizing factor from trypanosomes, homodimerizes and interacts with novel AU-rich element- and poly(A)-binding proteins forming a ribonucleoprotein complex. J Biol Chem 277:50520–50528

    Article  PubMed  Google Scholar 

  • Dallagiovanna B, Perez L, Sotelo-Silveira J, Smircich P, Duhagon MA, Garat B (2005) Trypanosoma cruzi: molecular characterization of TcPUF6, a Pumilio protein. Exp Parasitol 109:260–264

    Article  PubMed  CAS  Google Scholar 

  • Dallagiovanna B, Correa A, Probst C, Holetz F, Smircich P, de Aguiar A, Mansur F, Vieira da Silva C, Mortara R, Garat B, Buck G, Goldenberg S, Krieger M (2008) Functional genomic characterization of mRNAs associated with TcPUF6, a pumilio-like protein from Trypanosoma cruzi. J Biol Chem 283:8266–8273

    Article  PubMed  CAS  Google Scholar 

  • De Gaudenzi JG, Frasch ACC, Clayton C (2006) RNA-binding domain proteins in kinetoplastids: a comparative analysis. Eukaryot Cell 4:2106–2114

    Article  Google Scholar 

  • Delhi P, Queiroz R, Inchaustegui D, Carrington M, Clayton C (2011) Is there a classical nonsense-mediated decay pathway in trypanosomes? PLoS One 6:e25112

    Article  PubMed  CAS  Google Scholar 

  • Droll D, Archer S, Fenn K, Delhi P, Matthews K, Clayton C (2010) The trypanosome Pumilio-domain protein PUF7 associates with a nuclear cyclophilin and is involved in ribosomal RNA maturation. FEBS Lett 84:1156–1162

    Article  Google Scholar 

  • Estévez A (2008) The RNA-binding protein TbDRBD3 regulates the stability of a specific subset of mRNAs in trypanosomes. Nucleic Acids Res 36:4573–4586

    Article  PubMed  Google Scholar 

  • Estévez A, Kempf T, Clayton CE (2001) The exosome of Trypanosoma brucei. EMBO J 20:3831–3839

    Article  PubMed  Google Scholar 

  • Estévez AM, Lehner B, Sanderson CM, Ruppert T, Clayton C (2003) The roles of inter-subunit interactions in exosome stability. J Biol Chem 278:34943–34951

    Article  PubMed  Google Scholar 

  • Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E (2007) P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol 27:3970–3981

    Article  PubMed  CAS  Google Scholar 

  • Foat B, Houshmandi S, Olivas W, Bussemaker H (2005) Profiling condition-specific, genome-wide regulation of mRNA stability in yeast. Proc Natl Acad Sci U S A 102:17675–17680

    Article  PubMed  CAS  Google Scholar 

  • Gebauer F, Hentze M (2004) Molecular mechanisms of translation control. Nat Rev Mol Cell Biol 5:827–835

    Article  PubMed  CAS  Google Scholar 

  • Haanstra J, Stewart M, Luu V-D, van Tuijl A, Westerhoff H, Clayton C, Bakker B (2008) Control and regulation of gene expression: quantitative analysis of the expression of phosphoglycerate kinase in bloodstream form Trypanosoma brucei. J Biol Chem 283:2495–2507

    Article  PubMed  CAS  Google Scholar 

  • Haanstra J, Kerkhoven E, van Tuijl A, Blits M, Wurst M, van Nuland R, Albert M-A, Michels P, Bouwman J, Clayton C, Westerhoff H, Bakker B (2011) A domino effect in drug action: from metabolic assault towards parasite differentiation. Mol Microbiol 79:94–108

    Article  PubMed  CAS  Google Scholar 

  • Haile S, Papadopoulou B (2007) Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Curr Opin Microbiol 10:569–577

    Article  PubMed  CAS  Google Scholar 

  • Haile S, Estévez AM, Clayton C (2003) A role for the exosome in the initiation of degradation of unstable mRNAs. RNA 9:1491–1501

    Article  PubMed  CAS  Google Scholar 

  • Haile S, Cristodero M, Clayton C, Estévez A (2007) The subcellular localisation of trypanosome RRP6 and its association with the exosome. Mol Biochem Parasitol 151:52–58

    Article  PubMed  CAS  Google Scholar 

  • Haile S, Dupe A, Papadopoulou B (2008) Deadenylation-independent stage-specific mRNA degradation in Leishmania. Nucleic Acids Res 36:1634–1644

    Article  PubMed  CAS  Google Scholar 

  • Hartmann C, Clayton C (2008) Regulation of a transmembrane protein gene family by the small RNA binding proteins TbUBP1 and TbUBP2. Mol Biochem Parasitol 157:112–115

    Article  PubMed  CAS  Google Scholar 

  • Hendriks EF, Matthews KR (2005) Disruption of the developmental programme of Trypanosoma brucei by genetic ablation of TbZFP1, a differentiation-enriched CCCH protein. Mol Microbiol 57:706–716

    Article  PubMed  CAS  Google Scholar 

  • Hendriks EF, Robinson DR, Hinkins M, Matthews KR (2001) A novel CCCH protein which modulates differentiation of Trypanosoma brucei to its procyclic form. EMBO J 20:6700–6711

    Article  PubMed  CAS  Google Scholar 

  • Holetz F, Correa A, Avila A, Nakamura C, Krieger M, Goldenberg S (2007) Evidence of P-body-like structures in Trypanosoma cruzi. Biochem Biophys Res Commun 356:1062–1067

    Article  PubMed  CAS  Google Scholar 

  • Holetz F, Alves L, Probst C, Dallagiovanna B, Marchini F, Manque P, Buck G, Krieger M, Correa A, Goldenberg S (2010) Protein and mRNA content of TcDHH1-containing mRNPs in Trypanosoma cruzi. FEBS J 277:3415–3426

    Article  PubMed  CAS  Google Scholar 

  • Houseley J, Tollervey D (2009) The many pathways of RNA degradation. Cell 136:763–776

    Article  PubMed  CAS  Google Scholar 

  • Hu W, Petzold C, Coller J, Baker K (2010) Nonsense-mediated mRNA decapping occurs on polyribosomes in Saccharomyces cerevisiae. Nat Struct Mol Biol 17:244–247

    Article  PubMed  CAS  Google Scholar 

  • Jackson R, Hellen C, Pestova T (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 10:113–127

    Article  Google Scholar 

  • Jensen B, Sivam D, Kifer C, Myler P, Parsons M (2009) Widespread variation in transcript abundance within and across developmental stages of Trypanosoma brucei. BMC Genomics 10:482

    Article  PubMed  Google Scholar 

  • Kabani S, Fenn K, Ross A, Ivens A, Smith T, Ghazal P, Matthews K (2009) Genome-wide expression profiling of in vivo-derived bloodstream parasite stages and dynamic analysis of mRNA alterations during synchronous differentiation in Trypanosoma brucei. BMC Genomics 10:427

    Article  PubMed  Google Scholar 

  • Kielkopf CL, Lucke S, Green MR (2004) U2AF homology motifs: protein recognition in the RRM world. Genes Dev 18:1513–1526

    Article  PubMed  CAS  Google Scholar 

  • Koumandou V, Natesan S, Sergeenko T, Field M (2008) The trypanosome transcriptome is remodelled during differentiation but displays limited responsiveness within life stages. BMC Genomics 9:e298

    Article  Google Scholar 

  • Kramer S, Queiroz R, Ellis L, Webb H, Hoheisel J, Clayton C, Carrington M (2008) Stress granules and the heat shock response in Trypanosoma brucei. J Cell Sci 121:3002–3014

    Article  PubMed  CAS  Google Scholar 

  • Kramer S, Kimblin N, Carrington M (2010a) Genome-wide in silico screen for CCCH-type zinc finger proteins of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. BMC Genomics 11:283

    Article  PubMed  Google Scholar 

  • Kramer S, Queiroz R, Ellis L, Hoheisel J, Clayton C, Carrington M (2010b) The RNA helicase DHH1 is central to correct expression of many developmentally regulated mRNAs in trypanosomes. J Cell Sci 123:699–711

    Article  PubMed  CAS  Google Scholar 

  • Li C-H, Irmer H, Gudjonsdottir-Planck D, Freese S, Salm H, Haile S, Estévez AM, Clayton CE (2006) Roles of a Trypanosoma brucei 5′→3′ exoribonuclease homologue in mRNA degradation. RNA 12:2171–2186

    Article  PubMed  CAS  Google Scholar 

  • Ling A, Trotter J, Hendriks E (2011) A zinc finger protein, TbZC3H20, stabilises two developmentally regulated mRNAs in trypanosomes. J Biol Chem 286:20152–20162

    Article  PubMed  CAS  Google Scholar 

  • Luu VD, Brems S, Hoheisel J, Burchmore R, Guilbride D, Clayton C (2006) Functional analysis of Trypanosoma brucei PUF1. Mol Biochem Parasitol 150:340–349

    Article  PubMed  CAS  Google Scholar 

  • Manful T, Fadda A, Clayton C (2011) The role of the 5′-3′ exoribonuclease XRNA in transcriptome-wide mRNA degradation. RNA 17:2039–2047

    Article  PubMed  CAS  Google Scholar 

  • Milone J, Wilusz J, Bellofatto V (2002) Identification of mRNA decapping activities and an ARE-regulated 3′ to 5′ exonuclease activity in trypanosome extracts. Nucleic Acids Res 30:4040–4050

    Article  PubMed  CAS  Google Scholar 

  • Minning T, Weatherly D, Jr A, Orlando R, Tarleton R (2009) The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi. BMC Genomics 10:370

    Article  PubMed  Google Scholar 

  • Mishra KK, Holzer TR, Moore LL, LeBowitz JH (2003) A negative regulatory element controls mRNA abundance of the Leishmania mexicana Paraflagellar rod gene PFR2. Eukaryot Cell 2:1009–1017

    Article  PubMed  CAS  Google Scholar 

  • Mittra B, Ray DS (2004) Presence of a poly(A) binding protein and two proteins with cell cycle-dependent phosphorylation in Crithidia fasciculata mRNA cycling sequence binding protein II. Eukaryot Cell 3:1185–1197

    Article  PubMed  CAS  Google Scholar 

  • Mittra B, Sinha K, Hines J, Ray D (2003) Presence of multiple mRNA cycling sequence element-binding proteins in Crithidia fasciculata. J Biol Chem 278:26564–26571

    Article  PubMed  CAS  Google Scholar 

  • Muller M, Padmanabhan PK, Papadopoulou B (2010a) Selective inactivation of SIDER2 retroposon-mediated mRNA decay contributes to stage- and species-specific gene expression in Leishmania. Mol Microbiol 77:471–491

    Article  PubMed  CAS  Google Scholar 

  • Muller M, Padmanabhan PK, Rochette A, Mukherjee D, Smith M, Dumas C, Papadopoulou B (2010b) Rapid decay of unstable Leishmania mRNAs bearing a conserved retroposon signature 3′-UTR motif is initiated by a site-specific endonucleolytic cleavage without prior deadenylation. Nucleic Acids Res 38:5867–5883

    Article  PubMed  Google Scholar 

  • Nissan T, Rajyaguru P, She M, Song H, Parker R (2010) Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol Cell 39:773–783

    Article  PubMed  CAS  Google Scholar 

  • Noe G, De Gaudenzi J, Frasch A (2008) Functionally related transcripts have common RNA motifs for specific RNA-binding proteins in trypanosomes. BMC Mol Biol 9:107

    Article  PubMed  Google Scholar 

  • Ortiz D, Raquel Valdés R, Sanchez M, Hayenga J, Elya C, Detke S, Landfear S (2010) Purine restriction induces pronounced translational upregulation of the NT1 adenosine/pyrimidine nucleoside transporter in Leishmania major. Mol Microbiol 78:108–118

    PubMed  CAS  Google Scholar 

  • Ouellette M, Papadopoulou B (2009) Coordinated gene expression by post-transcriptional regulons in African trypanosomes. J Biol 8:100

    Article  PubMed  Google Scholar 

  • Park S, Myszka DG, Yu M, Littler SJ, Laird-Offringa IA (2000) HuD RNA recognition motifs play distinct roles in the formation of a stable complex with AU-rich RNA. Mol Cell Biol 20:4765–4772

    Article  PubMed  CAS  Google Scholar 

  • Paterou A, Walrad P, Craddy P, Fenn K, Matthews K (2006) Identification and stage-specific association with the translational apparatus of TbZFP3, a ccch protein that promotes trypanosome life cycle development. J Biol Chem 281:39002–39013

    Article  PubMed  CAS  Google Scholar 

  • Pays E, Hanocq-Quertier J, Hanocq F, Van Assel S, Nolan D, Rolin S (1993) Abrupt RNA changes precede the first cell division during the differentiation of Trypanosoma brucei bloodstream forms into procyclic forms in vitro. Mol Biochem Parasitol 61:107–114

    Article  PubMed  CAS  Google Scholar 

  • Queiroz R, Benz C, Fellenberg K, Hoheisel J, Clayton C (2009) Transcriptome analysis of differentiating trypanosomes reveals the existence of multiple post-transcriptional regulons. BMC Genomics 10:495

    Article  PubMed  Google Scholar 

  • Quijada L, Hartmann C, Guerra-Giraldez C, Drozdz M, Irmer H, Clayton CE (2002) Expression of the human RNA-binding protein HuR in Trypanosoma brucei induces differentiation-related changes in the abundance of developmentally-regulated mRNAs. Nucleic Acids Res 30:1–11

    Article  Google Scholar 

  • Rochette A, Raymond F, Corbeil J, Ouellette M, Papadopoulou B (2009) Whole-genome comparative RNA expression profiling of axenic and intracellular amastigote forms of Leishmania infantum. Mol Biochem Parasitol 165:32–47

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues DC, Silva R, Rondinelli E, Urmenyi TP (2010) Trypanosoma cruzi: modulation of HSP70 mRNA stability by untranslated regions during heat shock. Exp Parasitol 126:245–253

    Article  PubMed  CAS  Google Scholar 

  • Saint-Georges Y, Garcia M, Delaveau T, Jourdren L, Le Crom S, Lemoine S, Tanty V, Devaux F, Jacq C (2008) Yeast mitochondrial biogenesis: a role for the PUF RNA-binding protein Puf3p in mRNA localization. PLoS One 3:e2293

    Article  PubMed  Google Scholar 

  • Schneider C, Leung E, Brown J, Tollervey D (2009) The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res 37:1127–1140

    Article  PubMed  CAS  Google Scholar 

  • Schwede A, Ellis L, Luther J, Carrington M, Stoecklin G, Clayton C (2008) A role for Caf1 in mRNA deadenylation and decay in trypanosomes and human cells. Nucleic Acids Res 36:3374–3388

    Article  PubMed  CAS  Google Scholar 

  • Schwede A, Manful T, Jha B, Helbig C, Bercovich N, Stewart M, Clayton C (2009) The role of deadenylation in the degradation of unstable mRNAs in trypanosomes. Nucleic Acids Res 37:5511–5528

    Article  PubMed  CAS  Google Scholar 

  • Siegel T, Hekstra D, Wang X, Dewell S, Cross G (2010) Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res 38:4946–4957

    Article  PubMed  CAS  Google Scholar 

  • Staals R, Bronkhorst A, Schilders G, Slomovic S, Schuster G, Heck A, Raijmakers R, Pruijn G (2010) Dis3-like 1: a novel exoribonuclease associated with the human exosome. EMBO J 29:2358–2367

    Article  PubMed  CAS  Google Scholar 

  • Stalder L, Mühlemann O (2008) The meaning of nonsense. Trends Cell Biol 18:315–321

    Article  PubMed  CAS  Google Scholar 

  • Stern M, Gupta S, Salmon-Divon M, Haham T, Barda O, Levi S, Wachtel C, Nilsen T, Michaeli S (2009) Multiple roles for polypyrimidine tract binding (PTB) proteins in trypanosome RNA metabolism. RNA 15:648–665

    Article  PubMed  CAS  Google Scholar 

  • Temme C, Zhang L, Kremmer E, Ihling C, Chartier A, Sinz A, Simonelig M, Wahle E (2010) Subunits of the Drosophila CCR4-NOT complex and their roles in mRNA deadenylation. RNA 16:1356–1370

    Article  PubMed  CAS  Google Scholar 

  • Thomson E, Rappsilber J, Tollervey D (2007) Nop9 is an RNA binding protein present in pre-40S ribosomes and required for 18S rRNA synthesis in yeast. RNA 13:2165–2174

    Article  PubMed  CAS  Google Scholar 

  • Tomecki R, Kristiansen M, Lykke-Andersen S, Chlebowski A, Larsen K, Szczesny R, Drazkowska K, Pastula A, Andersen J, Stepien P, Dziembowski A, Jensen T (2010) The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J 29:2342–2357

    Article  PubMed  CAS  Google Scholar 

  • Utter C, Garcia S, Milone J, Bellofatto V (2011) Poly(A)-specific ribonuclease (PARN-1) function in stage-specific mRNA turnover in Trypanosoma brucei. Eukaryot Cell 10:1230–1240

    Article  PubMed  CAS  Google Scholar 

  • Vassella E, Den Abbeele J, Butikofer P, Renggli CK, Furger A, Brun R, Roditi I (2000) A major surface glycoprotein of Trypanosoma brucei is expressed transiently during development and can be regulated post-transcriptionally by glycerol or hypoxia. Genes Dev 14:615–626

    PubMed  CAS  Google Scholar 

  • Vassella E, Probst M, Schneider A, Studer E, Renggli C, Roditi I (2004) Expression of a major surface protein of Trypanosoma brucei insect forms is controlled by the activity of mitochondrial enzymes. Mol Biol Cell 15:3986–3993

    Article  PubMed  CAS  Google Scholar 

  • Walrad P, Paterou A, Acosta-Serrano A, Matthews K (2009) Differential trypanosome surface coat regulation by a CCCH protein that co-associates with procyclin mRNA cis-elements. PLoS Pathog 5:e1000317

    Article  PubMed  Google Scholar 

  • Wang X, Tanaka Hall T (2001) Structural basis for recognition of AU-rich element RNA by the HuD protein. Nat Struct Biol 8:141–145

    Article  PubMed  CAS  Google Scholar 

  • Webb H, Burns R, Ellis L, Kimblin N, Carrington M (2005) Developmentally regulated instability of the GPI-PLC mRNA is dependent on a short-lived protein factor. Nucleic Acids Res 33:1503–1512

    Article  PubMed  CAS  Google Scholar 

  • Wurst M, Robles A, Po J, Luu V, Brems S, Marentije M, Stoitsova S, Quijada L, Hoheisel J, Stewart M, Hartmann C, Clayton C (2009) An RNAi screen of the RRM-domain proteins of Trypanosoma brucei. Mol Biochem Parasitol 163:61–65

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in my laboratory is supported by the Land of Baden-Württemberg and the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Clayton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Clayton, C. (2012). mRNA Turnover in Trypanosomes. In: Bindereif, A. (eds) RNA Metabolism in Trypanosomes. Nucleic Acids and Molecular Biology, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28687-2_4

Download citation

Publish with us

Policies and ethics