SL RNA Biogenesis in Kinetoplastids: A Long and Winding Road

Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 28)


The spliced leader (SL) RNA is a defining element in the gene expression of kinetoplastids. The first 39 nt of this small RNA are trans-spliced onto every nuclear message, providing a unique hypermethylated cap and sequence elements required for stability and translation. Transcribed from a large tandem array, the journey that each primary SL transcript takes en route to splicing is marked by molecular modifications. Methylation, pseudouridylation, and 3′-end nuclease processing contribute to the mature product. The consequences of this elaborate pathway are not understood fully, but may reveal distinctions that will make these oft-parasitic organisms yield their foothold in the vertebrate host.


Stem Loop Splice Leader Premature Export General Splice Factor Cytosolic Trafficking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by NIH award AI056034 to DAC and NRS; JRZ was supported by USPHS National Research Service Award GM07104.


  1. Aksoy S, Shay GL, Villanueva MS, Beard CB, Richards FF (1992) Spliced leader RNA sequences of Trypanosoma rangeli are organized within the 5S rRNA-encoding genes. Gene 113:239–243PubMedGoogle Scholar
  2. Arhin GK, Shen S, Perez IF, Tschudi C, Ullu E (2005) Downregulation of the essential Trypanosoma brucei La protein affects accumulation of elongator methionyl-tRNA. Mol Biochem Parasitol 144:104–108PubMedGoogle Scholar
  3. Arhin GK, Li H, Ullu E, Tschudi C (2006a) A protein related to the vaccinia virus cap-specific methyltransferase VP39 is involved in cap 4 modification in Trypanosoma brucei. RNA 12:53–62PubMedGoogle Scholar
  4. Arhin GK, Ullu E, Tschudi C (2006b) 2′-O-Methylation of position 2 of the trypanosome spliced leader cap 4 is mediated by a 48 kDa protein related to vaccinia virus VP39. Mol Biochem Parasitol 147:137–139PubMedGoogle Scholar
  5. Bangs JD, Crain PF, Hashizume T, McCloskey JA, Boothroyd JC (1992) Mass spectrometry of mRNA cap 4 from trypanosomatids reveals two novel nucleosides. J Biol Chem 267:9805–9815PubMedGoogle Scholar
  6. Barth S, Hury A, Liang XH, Michaeli S (2005) Elucidating the role of H/ACA-like RNAs in trans-splicing and rRNA processing via RNA interference silencing of the Trypanosoma brucei CBF5 pseudouridine synthase. J Biol Chem 280:34558–34568PubMedGoogle Scholar
  7. Bélanger F, Stepinski J, Darzynkiewicz E, Pelletier J (2010) Characterization of hMTr1, a human cap1 2′O-ribose methyltransferase. J Biol Chem 285:33037–33044PubMedGoogle Scholar
  8. Benz C, Nilsson D, Andersson B, Clayton C, Guilbride DL (2005) Messenger RNA processing sites in Trypanosoma brucei. Mol Biochem Parasitol 143:125–134PubMedGoogle Scholar
  9. Biton M, Mandelboim M, Arvatz G, Michaeli S (2006) RNAi interference of XPO1 and Sm genes and their effect on the spliced leader RNA in Trypanosoma brucei. Mol Biochem Parasitol 150:132–143PubMedGoogle Scholar
  10. Boulon S, Verheggen C, Jady BE, Girard C, Pescia C, Paul C, Ospina JK, Kiss T, Matera AG, Bordonné R, Bertrand E (2004) PHAX and CRM1 are required sequentially to transport U3 snoRNA to nucleoli. Mol Cell 16:777–787PubMedGoogle Scholar
  11. Bruzik JP, Van Doren K, Hirsh D, Steitz JA (1988) Trans splicing involves a novel form of small nuclear ribonucleoprotein particles. Nature 335:559–562PubMedGoogle Scholar
  12. Campbell DA, Thomas S, Sturm NR (2003) Transcription in the kinetoplastid protozoa: why be normal? Microbes Infect 5:1231–1240PubMedGoogle Scholar
  13. Clayton C (2002) Life without transcriptional control? From fly to man and back again. EMBO J 21:1881–1888PubMedGoogle Scholar
  14. Clayton C, Shapira M (2007) Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol 156:93–101PubMedGoogle Scholar
  15. Das A, Banday M, Bellofatto V (2008) RNA polymerase transcription machinery in trypanosomes. Eukaryot Cell 7:429–434PubMedGoogle Scholar
  16. Denker JA, Zuckerman DM, Maroney PA, Nilsen TW (2002) New components of the spliced leader RNP required for nematode trans-splicing. Nature 417:667–670PubMedGoogle Scholar
  17. Dhalia R, Reis CR, Freire ER, Rocha PO, Katz R, Muniz JR, Standart N, de Melo Neto OP (2005) Translation initiation in Leishmania major: characterisation of multiple eIF4F subunit homologues. Mol Biochem Parasitol 140:23–41PubMedGoogle Scholar
  18. Dhalia R, Marinsek N, Reis CR, Katz R, Muniz JR, Standart N, Carrington M, de Melo Neto OP (2006) The two eIF4A helicases in Trypanosoma brucei are functionally distinct. Nucleic Acids Res 34:2495–2507PubMedGoogle Scholar
  19. Dossin FdM, Schenkman S (2005) Actively transcribing RNA polymerase II concentrates on spliced leader genes in the nucleus of Trypanosoma cruzi. Eukaryot Cell 4:960–970Google Scholar
  20. Feder M, Pas J, Wyrwicz LS, Bujnicki JM (2003) Molecular phylogenetics of the RrmJ/fibrillarin superfamily of ribose 2′-O-methyltransferases. Gene 302:129–138PubMedGoogle Scholar
  21. Foldynová-Trantírková S, Paris Z, Sturm NR, Campbell DA, Lukeš J (2005) The Trypanosoma brucei La protein is a candidate poly(U) shield that impacts spliced leader RNA maturation and tRNA intron removal. Int J Parasitol 35:359–366PubMedGoogle Scholar
  22. Ganot P, Kallesoe T, Reinhardt R, Chourrout D, Thompson EM (2004) Spliced-leader RNA trans splicing in a chordate, Oikopleura dioica, with a compact genome. Mol Cell Biol 24:7795–7805PubMedGoogle Scholar
  23. Girard C, Mouaikel J, Neel H, Bertrand E, Bordonne R (2004) Nuclear localization properties of a conserved protuberance in the Sm core complex. Exp Cell Res 299:199–208PubMedGoogle Scholar
  24. Goldshmidt H, Matas D, Kabi A, Carmi S, Hope R, Michaeli S (2010) Persistent ER stress induces the spliced leader RNA silencing pathway (SLS), leading to programmed cell death in Trypanosoma brucei. PLoS Pathog 6(1):e1000731. doi: 10.1371/journal.ppat.1000731 PubMedGoogle Scholar
  25. Gopal S, Awadalla S, Gaasterland T, Cross GA (2005) A computational investigation of kinetoplastid trans-splicing. Genome Biol 6:R95PubMedGoogle Scholar
  26. Günzl A (2003) Transcription. In: Marr JJ, Nilson TW, Komuniecki RW (eds) Molecular medical parasitology. Academic, London, pp 47–65Google Scholar
  27. Günzl A (2010a) The pre-mRNA splicing machinery of trypanosomes: complex or simplified? Eukaryot Cell 9:1159–1170PubMedGoogle Scholar
  28. Günzl A (2010b) RNA polymerases in trypanosomes. In: Bindereif A (ed) RNA metabolism in trypanosomes. Springer, HeidelbergGoogle Scholar
  29. Haanstra JR, Stewart M, Luu VD, van Tuijl A, Westerhoff HV, Clayton C, Bakker BM (2008) Control and regulation of gene expression: quantitative analysis of the expression of phosphoglycerate kinase in bloodstream form Trypanosoma brucei. J Biol Chem 283:2495–2507PubMedGoogle Scholar
  30. Hall MP, Ho CK (2006) Functional characterization of a 48 kDa Trypanosoma brucei cap 2 RNA methyltransferase. Nucleic Acids Res 34:5594–5602PubMedGoogle Scholar
  31. Hamma T, Ferre-D’Amare AR (2006) Pseudouridine synthases. Chem Biol 13:1125–1135PubMedGoogle Scholar
  32. Harris KA Jr, Crothers DM, Ullu E (1995) In vivo structural analysis of spliced leader RNAs in Trypanosoma brucei and Leptomonas collosoma: a flexible structure that is independent of cap4 methylations. RNA 1:351–362PubMedGoogle Scholar
  33. Hastings KE (2005) SL trans-splicing: easy come or easy go? Trends Genet 21:240–247PubMedGoogle Scholar
  34. Hitchcock RA, Zeiner GM, Sturm NR, Campbell DA (2004) The 3′-termini of small RNAs in Trypanosoma brucei. FEMS Microbiol Lett 236:73–78PubMedGoogle Scholar
  35. Hitchcock RA, Thomas S, Campbell DA, Sturm NR (2007) The promoter and transcribed regions of the Leishmania tarentolae spliced leader RNA gene array are devoid of nucleosomes. BMC Microbiol 7:44PubMedGoogle Scholar
  36. Ho CK, Shuman S (2001) Trypanosoma brucei RNA triphosphatase. J Biol Chem 276:46182–46186PubMedGoogle Scholar
  37. Hury A, Goldshmidt H, Tkacz ID, Michaeli S (2009) Trypanosome spliced-leader-associated RNA (SLA1) localization and implications for spliced-leader RNA biogenesis. Eukaryot Cell 8:56–68PubMedGoogle Scholar
  38. Jaé N, Wang P, Gu T, Hühn M, Palfi Z, Urlaub H, Bindereif A (2010) Essential role of a trypanosome U4-specific Sm core protein in small nuclear ribonucleoprotein assembly and splicing. Eukaryot Cell 9:379–386PubMedGoogle Scholar
  39. Jaé N, Preußer C, Krüger T, Tkacz ID, Engstler M, Michaeli S, Bindereif A (2011) snRNA-specific role of SMN in trypanosome snRNP biogenesis in vivo. RNA Biol 8:90–100PubMedGoogle Scholar
  40. Kolev NG, Franklin JB, Carmi S, Shi H, Michaeli S, Tschudi C (2010) The transcriptome of the human pathogen Trypanosoma brucei at single-nucleotide resolution. PLoS Pathog 6:e1001090PubMedGoogle Scholar
  41. Lahav T, Sivam D, Volpin H, Ronen M, Tsigankov P, Green A, Holland N, Kuzyk M, Borchers C, Zilberstein D, Myler PJ (2011) Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB J 25:515–525PubMedGoogle Scholar
  42. Lee JH, Cai G, Panigrahi AK, Dunham-Ems S, Nguyen TN, Radolf JD, Asturias FJ, Gunzl A (2010) A TFIIH-associated mediator head is a basal factor of small nuclear spliced leader RNA gene transcription in early-diverged trypanosomes. Mol Cell Biol 30:5502–5513PubMedGoogle Scholar
  43. Li H, Tschudi C (2005) Novel and essential subunits in the 300-kilodalton nuclear cap binding complex of Trypanosoma brucei. Mol Cell Biol 25:2216–2226PubMedGoogle Scholar
  44. Liang X-h, Xu Y-x, Michaeli S (2002) The spliced leader-associated RNA is a trypanosome-specific sn(o) RNA that has the potential to guide pseudouridine formation on the SL RNA. RNA 8:237–246PubMedGoogle Scholar
  45. Liang X-h, Haritan A, Uliel S, Michaeli S (2003a) trans and cis splicing in trypanosomatids: mechanisms, factors, and regulation. Eukaryot Cell 2:830–840PubMedGoogle Scholar
  46. Liang X-h, Liu Q, Michaeli S (2003b) Small nucleolar RNA interference induced by antisense or double-stranded RNA in trypanosomatids. Proc Natl Acad Sci USA 100:7521–7526PubMedGoogle Scholar
  47. Lücke S, Xu GL, Palfi Z, Cross M, Bellofatto V, Bindereif A (1996) Spliced leader RNA of trypanosomes: in vivo mutational analysis reveals extensive and distinct requirements for trans splicing and cap 4 formation. EMBO J 15:4380–4391PubMedGoogle Scholar
  48. Lustig Y, Sheiner L, Vagima Y, Goldshmidt H, Das A, Bellofatto V, Michaeli S (2007) Spliced-leader RNA silencing: a novel stress-induced mechanism in Trypanosoma brucei. EMBO Rep 8:408–413PubMedGoogle Scholar
  49. Luz Ambrosio D, Lee JH, Panigrahi AK, Nguyen TN, Cicarelli RM, Gunzl A (2009) Spliceosomal proteomics in Trypanosoma brucei revealed new RNA splicing factors. Eukaryot Cell 8:990–1000PubMedGoogle Scholar
  50. MacMorris M, Kumar M, Lasda E, Larsen A, Kraemer B, Blumenthal T (2007) A novel family of C. elegans snRNPs contains proteins associated with trans-splicing. RNA 13:511–520PubMedGoogle Scholar
  51. Mair G, Ullu E, Tschudi C (2000) Cotranscriptional cap 4 formation on the Trypanosoma brucei spliced leader RNA. J Biol Chem 275:28994–28999PubMedGoogle Scholar
  52. Mandelboim M, Barth S, Biton M, X-h L, Michaeli S (2003) Silencing of Sm proteins in Trypanosoma brucei by RNAi captured a novel cytoplasmic intermediate in SL RNA biogenesis. J Biol Chem 278:51469–51478PubMedGoogle Scholar
  53. Martínez-Calvillo S, Vizuet-de-Rueda JC, Florencio-Martínez LE, Manning-Cela RG, Figueroa-Angulo EE (2010) Gene expression in trypanosomatid parasites. J Biomed Biotechnol 2010:525241. doi: 10.1155/2010/525241 PubMedGoogle Scholar
  54. Maslov DA, Westenberger SJ, Xu X, Campbell DA, Sturm NR (2007) Discovery and barcoding by analysis of spliced leader RNA gene sequences of new isolates of Trypanosomatidae from Heteroptera in Costa Rica and Ecuador. J Eukaryot Microbiol 54:57–65PubMedGoogle Scholar
  55. Matthews KR, Tschudi C, Ullu E (1994) A common pyrimidine-rich motif governs trans-splicing and polyadenylation of tubulin polycistronic pre-mRNA in trypanosomes. Genes Dev 8:491–501PubMedGoogle Scholar
  56. Mittra B, Zamudio JR, Bujnicki JM, Stepinski J, Darzynkiewicz E, Campbell DA, Sturm NR (2008) The TbMTr1 spliced leader RNA cap 1 2′-O-ribose methyltransferase from Trypanosoma brucei acts with substrate specificity. J Biol Chem 283:3161–3172PubMedGoogle Scholar
  57. Murthy VK, Dibbern KM, Campbell DA (1992) PCR amplification of mini-exon genes differentiates Trypanosoma cruzi from Trypanosoma rangeli. Mol Cell Probes 6:237–243PubMedGoogle Scholar
  58. Myslyuk I, Doniger T, Horesh Y, Hury A, Hoffer R, Ziporen Y, Michaeli S, Unger R (2008) Psiscan: a computational approach to identify H/ACA-like and AGA-like non-coding RNA in trypanosomatid genomes. BMC Bioinformatics 9:471PubMedGoogle Scholar
  59. Neuenkirchen N, Chari A, Fischer U (2008) Deciphering the assembly pathway of Sm-class U snRNPs. FEBS Lett 582:1997–2003PubMedGoogle Scholar
  60. Nilsen TW (2001) Evolutionary origin of SL-addition trans-splicing: still an enigma. Trends Genet 17:678–680PubMedGoogle Scholar
  61. Nilsson D, Gunasekera K, Mani J, Osteras M, Farinelli L, Baerlocher L, Roditi I, Ochsenreiter T (2010) Spliced leader trapping reveals widespread alternative splicing patterns in the highly dynamic transcriptome of Trypanosoma brucei. PLoS Pathog 6:e1001037PubMedGoogle Scholar
  62. Ohno M, Segref A, Bachi A, Wilm M, Mattaj IW (2000) PHAX, a mediator of U snRNA nuclear export whose activity is regulated by phosphorylation. Cell 101:187–198PubMedGoogle Scholar
  63. Palenchar JB, Bellofatto V (2006) Gene transcription in trypanosomes. Mol Biochem Parasitol 146:135–141PubMedGoogle Scholar
  64. Palfi Z, Jae N, Preusser C, Kaminska KH, Bujnicki JM, Lee JH, Gunzl A, Kambach C, Urlaub H, Bindereif A (2009) SMN-assisted assembly of snRNP-specific Sm cores in trypanosomes. Genes Dev 23:1650–1664PubMedGoogle Scholar
  65. Roberts TG, Dungan JM, Watkins KP, Agabian N (1996) The SLA RNA gene of Trypanosoma brucei is organized in a tandem array which encodes several small RNAs. Mol Biochem Parasitol 83:163–174PubMedGoogle Scholar
  66. Roberts TG, Sturm NR, Yee BK, Yu MC, Hartshorne T, Agabian N, Campbell DA (1998) Three small nucleolar RNAs identified from the spliced leader-associated RNA locus in kinetoplastid protozoans. Mol Cell Biol 18:4409–4417PubMedGoogle Scholar
  67. Ruan J-p, Shen S, Ullu E, Tschudi C (2007) Evidence for a capping enzyme with specificity for the trypanosome spliced leader RNA. Mol Biochem Parasitol 156:246–254PubMedGoogle Scholar
  68. Saito RM, Elgort MG, Campbell DA (1994) A conserved upstream element is essential for transcription of the Leishmania tarentolae mini-exon gene. EMBO J 13:5460–5469PubMedGoogle Scholar
  69. Santana DM, Lukes J, Sturm NR, Campbell DA (2001) Two sequence classes of kinetoplastid 5S ribosomal RNA gene revealed among bodonid spliced leader RNA gene arrays. FEMS Microbiol Lett 204:233–237PubMedGoogle Scholar
  70. Shaked H, Wachtel C, Tulinski P, Yahia NH, Barda O, Darzynkiewicz E, Nilsen TW, Michaeli S (2010) Establishment of an in vitro trans-splicing system in Trypanosoma brucei that requires endogenous spliced leader RNA. Nucleic Acids Res 38(10):e114PubMedGoogle Scholar
  71. Siegel TN, Tan KS, Cross GA (2005) Systematic study of sequence motifs for RNA trans splicing in Trypanosoma brucei. Mol Cell Biol 25:9586–9594PubMedGoogle Scholar
  72. Siegel TN, Hekstra DR, Wang X, Dewell S, Cross GA (2010) Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res 38:4946–4957PubMedGoogle Scholar
  73. Sturm NR, Campbell DA (1999) The role of intron structures in trans-splicing and cap 4 formation for the Leishmania spliced leader RNA. J Biol Chem 274:19361–19367PubMedGoogle Scholar
  74. Sturm NR, Fleischmann J, Campbell DA (1998) Efficient trans-splicing of mutated spliced leader exons in Leishmania tarentolae. J Biol Chem 273:18689–18692PubMedGoogle Scholar
  75. Sturm NR, Yu MC, Campbell DA (1999) Transcription termination and 3′-end processing of the spliced leader RNA in kinetoplastids. Mol Cell Biol 19:1595–1604PubMedGoogle Scholar
  76. Takagi Y, Sindkar S, Ekonomidis D, Hall MP, Ho CK (2007) Trypanosoma brucei encodes a bifunctional capping enzyme essential for cap 4 formation on the spliced leader RNA. J Biol Chem 282:15995–16005PubMedGoogle Scholar
  77. Thomas S, Westenberger SJ, Campbell DA, Sturm NR (2005) Intragenomic spliced leader RNA array analysis of kinetoplastids reveals unexpected transcribed region diversity in Trypanosoma cruzi. Gene 352:100–108PubMedGoogle Scholar
  78. Tkacz ID, Lustig Y, Stern MZ, Biton M, Salmon-Divon M, Das A, Bellofatto V, Michaeli S (2007) Identification of novel snRNA-specific Sm proteins that bind selectively to U2 and U4 snRNAs in Trypanosoma brucei. RNA 13:30–43PubMedGoogle Scholar
  79. Tkacz ID, Gupta SK, Volkov V, Romano M, Haham T, Tulinski P, Lebenthal I, Michaeli S (2010) Analysis of spliceosomal proteins in Trypanosomatids reveals novel functions in mRNA processing. J Biol Chem 285:27982–27999PubMedGoogle Scholar
  80. Tycowski KT, Shu MD, Kukoyi A, Steitz JA (2009) A conserved WD40 protein binds the Cajal body localization signal of scaRNP particles. Mol Cell 34:47–57PubMedGoogle Scholar
  81. Ullu E, Tschudi C (1995) Accurate modification of the trypanosome spliced leader cap structure in a homologous cell-free system. J Biol Chem 270:20365–20369PubMedGoogle Scholar
  82. Uzureau P, Daniels JP, Walgraffe D, Wickstead B, Pays E, Gull K, Vanhamme L (2008) Identification and characterization of two trypanosome TFIIS proteins exhibiting particular domain architectures and differential nuclear localizations. Mol Microbiol 69:1121–1136PubMedGoogle Scholar
  83. Vandenberghe AE, Meedel TH, Hastings KEM (2001) mRNA 5′-leader trans-splicing in the chordates. Genes Dev 15:294–303PubMedGoogle Scholar
  84. Wang P, Palfi Z, Preusser C, Lücke S, Lane WS, Kambach C, Bindereif A (2006) Sm core variation in spliceosomal small nuclear ribonucleoproteins from Trypanosoma brucei. EMBO J 25:4513–4523PubMedGoogle Scholar
  85. Watkins KP, Dungan JM, Agabian N (1994) Identification of a small RNA that interacts with the 5′ splice site of the Trypanosoma brucei spliced leader RNA in vivo. Cell 76:171–182Google Scholar
  86. Webb C-HT, Riccitelli NJ, Ruminski DJ, Lupták A (2009) Widespread occurrence of self-cleaving ribozymes. Science 236:953Google Scholar
  87. Werner M, Purta E, Kaminska KH, Cymerman IA, Campbell DA, Mittra B, Zamudio JR, Sturm NR, Jaworski J, Bujnicki JM (2011) 2′-O-ribose methylation of cap 2 in human: function and evolution in a horizontally mobile family. Nucleic Acids Res 39:4756–4768PubMedGoogle Scholar
  88. Westenberger SJ, Sturm NR, Yanega D, Podlipaev SA, Zeledón R, Campbell DA, Maslov DA (2004) Trypanosomatid biodiversity in Costa Rica: genotyping of parasites from Heteroptera using the spliced leader RNA gene. Parasitology 129:537–547PubMedGoogle Scholar
  89. Xu Y, Liu L, Michaeli S (2000) Functional analyses of positions across the 5′ splice site of the trypanosomatid spliced leader RNA—implications for base-pair interaction with U5 and U6 snRNAs. J Biol Chem 275:27883–27892PubMedGoogle Scholar
  90. Xu Y, Liu L, Lopez-Estraño C, Michaeli S (2001) Expression studies on clustered trypanosomatid box C/D small nucleolar RNAs. J Biol Chem 276:14289–14298PubMedGoogle Scholar
  91. Yoffe Y, Zuberek J, Lerer A, Lewdorowicz M, Stepinski J, Altmann M, Darzynkiewicz E, Shapira M (2006) Binding specificities and potential roles of isoforms of eukaryotic initiation factor eIF4E in Leishmania. Eukaryot Cell 5:1969–1979PubMedGoogle Scholar
  92. Yoffe Y, Léger M, Zinoviev A, Zuberek J, Darzynkiewicz E, Wagner G, Shapira M (2009) Evolutionary changes in the Leishmania eIF4F complex involve variations in the eIF4E-eIF4G interactions. Nucleic Acids Res 37(10):3243–3253PubMedGoogle Scholar
  93. Yu MC, Sturm NR, Saito RM, Roberts TG, Campbell DA (1998) Single nucleotide resolution of promoter activity and protein binding for the Leishmania tarentolae spliced leader RNA gene. Mol Biochem Parasitol 94:265–281PubMedGoogle Scholar
  94. Zamudio JR, Mittra B, Zeiner GM, Feder M, Bujnicki JM, Sturm NR, Campbell DA (2006) Complete cap 4 formation is not required for viability in Trypanosoma brucei. Eukaryot Cell 5:905–915PubMedGoogle Scholar
  95. Zamudio JR, Mittra B, Foldynová-Trantírková S, Zeiner GM, Lukeš J, Bujnicki JM, Sturm NR, Campbell DA (2007) The 2′-O-ribose methyltransferase for cap 1 of spliced leader RNA and U1 small nuclear RNA in Trypanosoma brucei. Mol Cell Biol 27:6084–6092PubMedGoogle Scholar
  96. Zamudio JR, Mittra B, Campbell DA, Sturm NR (2009a) Hypermethylated cap 4 maximizes Trypanosoma brucei translation. Mol Microbiol 72:1100–1110PubMedGoogle Scholar
  97. Zamudio JR, Mittra B, Chattopadhyay A, Wohlschlegel JA, Sturm NR, Campbell DA (2009b) Trypanosoma brucei spliced leader RNA maturation by the cap 1 2′-O-ribose methyltransferase and SLA1 H/ACA snoRNA pseudouridine synthase complex. Mol Cell Biol 29:1202–1211PubMedGoogle Scholar
  98. Zeiner GM, Sturm NR, Campbell DA (2003a) Exportin 1 mediates nuclear export of the kinetoplastid spliced leader RNA. Eukaryot Cell 2:222–230PubMedGoogle Scholar
  99. Zeiner GM, Sturm NR, Campbell DA (2003b) The Leishmania tarentolae spliced leader contains determinants for association with polysomes. J Biol Chem 278:38269–38275PubMedGoogle Scholar
  100. Zeiner GM, Foldynová S, Sturm NR, Lukeš J, Campbell DA (2004a) SmD1 is required for spliced leader RNA biogenesis. Eukaryot Cell 3:241–244PubMedGoogle Scholar
  101. Zeiner GM, Hitchcock RA, Sturm NR, Campbell DA (2004b) 3′-end polishing of the kinetoplastid spliced leader RNA is performed by SNIP, a 3′ → 5′ exonuclease with a motley assortment of small RNA substrates. Mol Cell Biol 24:10390–10396PubMedGoogle Scholar
  102. Zhang H, Hou Y, Miranda L, Campbell DA, Sturm NR, Gaasterland T, Lin S (2007) Spliced leader RNA trans-splicing in dinoflagellates. Proc Natl Acad Sci USA 104:4618–4623PubMedGoogle Scholar
  103. Zhang H, Campbell DA, Sturm NR, Dungan CF, Lin S (2011) Spliced leader RNAs, mtDNA reading frameshifts and multiprotein phylogeny expand support for the genus Perkinsus as a unique group of Alveolates. PLoS One 5:e19933Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
  2. 2.Koch Institute, Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations