RNA Polymerases and Transcription Factors of Trypanosomes

Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 28)


RNA synthesis in trypanosomatid organisms deviates substantially from what we see in model organisms. In these parasites, protein-coding genes are arranged in long tandem arrays that are polycistronically transcribed by an unresolved mode of transcription initiation. Moreover, the African Trypanosoma brucei has evolved a multifunctional RNA polymerase I system which it employs for pre-rRNA synthesis as well as for transcription of specific gene units encoding its major cell surface antigens. Additionally, the trypanosomatid RNA polymerase III system, by relying mostly on bidirectional tRNA gene promoters, exhibits clear differences to other eukaryotic systems. Interestingly, annotation of completed trypanosomatid genomes revealed only a small subset of basal transcription factors (BTFs), which suggested that trypanosomes have a simplified transcription machinery. Recent research, however, has demonstrated that trypanosomes possess extremely divergent orthologs of most BTFs and that these factors deviate in many aspects from their human counterparts; they are the focus of this chapter.


Variant Surface Glycoprotein Tandem Affinity Purification Splice Leader snRNA Gene RRNA Promoter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I thank Tu N. Nguyen and Justin K. Kirkham for critical reading of the manuscript. This work was supported by National Institutes of Health grants AI059377 and AI073300 to A.G.


  1. Aeby E, Ullu E, Yepiskoposyan H, Schimanski B, Roditi I, Mühlemann O, Schneider A (2010) tRNASec is transcribed by RNA polymerase II in Trypanosoma brucei but not in humans. Nucleic Acids Res 38:5833–5843PubMedGoogle Scholar
  2. Aksoy S, Lalor TM, Martin J, Van der Ploeg LH, Richards FF (1987) Multiple copies of a retroposon interrupt spliced leader RNA genes in the African trypanosome, Trypanosoma gambiense. EMBO J 6:3819–3826PubMedGoogle Scholar
  3. Alsford S, Kawahara T, Isamah C, Horn D (2007) A sirtuin in the African trypanosome is involved in both DNA repair and telomeric gene silencing but is not required for antigenic variation. Mol Microbiol 63:724–736PubMedGoogle Scholar
  4. Baek HJ, Kang YK, Roeder RG (2006) Human mediator enhances basal transcription by facilitating recruitment of transcription factor IIB during preinitiation complex assembly. J Biol Chem 281:15172–15181PubMedGoogle Scholar
  5. Belotserkovskaya R, Reinberg D (2004) Facts about FACT and transcript elongation through chromatin. Curr Opin Genet Dev 14:139–146PubMedGoogle Scholar
  6. Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D (2003) FACT facilitates transcription-dependent nucleosome alteration. Science 301:1090–1093PubMedGoogle Scholar
  7. Ben Amar MF, Jefferies D, Pays A, Bakalara N, Kendall G, Pays E (1991) The actin gene promoter of Trypanosoma brucei. Nucleic Acids Res 19:5857–5862PubMedGoogle Scholar
  8. Bentley DL (2005) Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr Opin Cell Biol 17:251–256PubMedGoogle Scholar
  9. Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Böhme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UC, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark LN, Corton CH, Cronin A, Davies RM, Doggett J, Djikeng A, Feldblyum T, Field MC, Fraser A, Goodhead I, Hance Z, Harper D, Harris BR, Hauser H, Hostetler J, Ivens A, Jagels K, Johnson D, Johnson J, Jones K, Kerhornou AX, Koo H, Larke N, Landfear S, Larkin C, Leech V, Line A, Lord A, MacLeod A, Mooney PJ, Moule S, Martin DM, Morgan GW, Mungall K, Norbertczak H, Ormond D, Pai G, Peacock CS, Peterson J, Quail MA, Rabbinowitsch E, Rajandream MA, Reitter C, Salzberg SL, Sanders M, Schobel S, Sharp S, Simmonds M, Simpson AJ, Tallon L, Turner CM, Tait A, Tivey AR, Van Aken S, Walker D, Wanless D, Wang S, White B, White O, Whitehead S, Woodward J, Wortman J, Adams MD, Embley TM, Gull K, Ullu E, Barry JD, Fairlamb AH, Opperdoes F, Barrell BG, Donelson JE, Hall N, Fraser CM, Melville SE, El Sayed NM (2005) The genome of the African Trypanosome Trypanosoma brucei. Science 309:416–422PubMedGoogle Scholar
  10. Biebinger S, Rettenmaier S, Flaspohler J, Hartmann C, Pena Diaz J, Wirtz LE, Hotz HR, Barry JD, Clayton C (1996) The PARP promoter of Trypanosoma brucei is developmentally regulated in a chromosomal context. Nucleic Acids Res 24:1202–1211PubMedGoogle Scholar
  11. Brandenburg J, Schimanski B, Nogoceke E, Nguyen TN, Padovan JC, Chait BT, Cross GA, Günzl A (2007) Multifunctional class I transcription in Trypanosoma brucei depends on a novel protein complex. EMBO J 26:4856–4866PubMedGoogle Scholar
  12. Brown SD, Huang J, Van der Ploeg LH (1992) The promoter for the procyclic acidic repetitive protein (PARP) genes of Trypanosoma brucei shares features with RNA polymerase I promoters. Mol Cell Biol 12:2644–2652PubMedGoogle Scholar
  13. Buratowski S (2009) Progression through the RNA polymerase II CTD cycle. Mol Cell 36:541–546PubMedGoogle Scholar
  14. Bushnell DA, Westover KD, Davis RE, Kornberg RD (2004) Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms. Science 303:983–988PubMedGoogle Scholar
  15. Cai G, Imasaki T, Yamada K, Cardelli F, Takagi Y, Asturias FJ (2010) Mediator head module structure and functional interactions. Nat Struct Mol Biol 17:273–279PubMedGoogle Scholar
  16. Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engström PG, Frith MC, Forrest AR, Alkema WB, Tan SL, Plessy C, Kodzius R, Ravasi T, Kasukawa T, Fukuda S, Kanamori-Katayama M, Kitazume Y, Kawaji H, Kai C, Nakamura M, Konno H, Nakano K, Mottagui-Tabar S, Arner P, Chesi A, Gustincich S, Persichetti F, Suzuki H, Grimmond SM, Wells CA, Orlando V, Wahlestedt C, Liu ET, Harbers M, Kawai J, Bajic VB, Hume DA, Hayashizaki Y (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38:626–635PubMedGoogle Scholar
  17. Carrington M, Roditi I, Williams RO (1987) The structure and transcription of an element interspersed between tandem arrays of mini-exon donor RNA genes in Trypanosoma brucei. Nucleic Acids Res 15:10179–10198PubMedGoogle Scholar
  18. Chapman AB, Agabian N (1994) Trypanosoma brucei RNA polymerase II is phosphorylated in the absence of carboxyl-terminal domain heptapeptide repeats. J Biol Chem 269:4754–4760PubMedGoogle Scholar
  19. Das A, Bellofatto V (2003) RNA polymerase II-dependent transcription in trypanosomes is associated with a SNAP complex-like transcription factor. Proc Natl Acad Sci USA 100:80–85PubMedGoogle Scholar
  20. Das A, Bellofatto V (2009) The non-canonical CTD of RNAP-II is essential for productive RNA synthesis in Trypanosoma brucei. PLoS One 4:e6959PubMedGoogle Scholar
  21. Das A, Zhang Q, Palenchar JB, Chatterjee B, Cross GA, Bellofatto V (2005) Trypanosomal TBP functions with the multisubunit transcription factor tSNAP to direct spliced-leader RNA gene expression. Mol Cell Biol 25:7314–7322PubMedGoogle Scholar
  22. Das A, Li H, Liu T, Bellofatto V (2006) Biochemical characterization of Trypanosoma brucei RNA polymerase II. Mol Biochem Parasitol 150:201–210PubMedGoogle Scholar
  23. de Lange T, Liu AY, Van der Ploeg LH, Borst P, Tromp MC, Van Boom JH (1983) Tandem repetition of the 5′ mini-exon of variant surface glycoprotein genes: a multiple promoter for VSG gene transcription? Cell 34:891–900PubMedGoogle Scholar
  24. Denninger V, Fullbrook A, Bessat M, Ersfeld K, Rudenko G (2010) The FACT subunit TbSpt16 is involved in cell cycle specific control of VSG expression sites in Trypanosoma brucei. Mol Microbiol 78:459–474PubMedGoogle Scholar
  25. Devaux S, Lecordier L, Uzureau P, Walgraffe D, Dierick JF, Poelvoorde P, Pays E, Vanhamme L (2006) Characterization of RNA polymerase II subunits of Trypanosoma brucei. Mol Biochem Parasitol 148:60–68PubMedGoogle Scholar
  26. Djikeng A, Ferreira L, D'Angelo M, Dolezal P, Lamb T, Murta S, Triggs V, Ulbert S, Villarino A, Renzi S, Ullu E, Tschudi C (2001) Characterization of a candidate Trypanosoma brucei U1 small nuclear RNA gene. Mol Biochem Parasitol 113:109–115PubMedGoogle Scholar
  27. Donelson JE (2003) Antigenic variation and the African trypanosome genome. Acta Trop 85:391–404PubMedGoogle Scholar
  28. Dunbar DA, Chen AA, Wormsley S, Baserga SJ (2000) The genes for small nucleolar RNAs in Trypanosoma brucei are organized in clusters and are transcribed as a polycistronic RNA. Nucleic Acids Res 28:2855–2861PubMedGoogle Scholar
  29. Ehlers B, Czichos J, Overath P (1987) RNA turnover in Trypanosoma brucei. Mol Cell Biol 7:1242–1249PubMedGoogle Scholar
  30. El Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, Andersson B (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415PubMedGoogle Scholar
  31. Esnault C, Ghavi-Helm Y, Brun S, Soutourina J, Van Berkum N, Boschiero C, Holstege F, Werner M (2008) Mediator-dependent recruitment of TFIIH modules in preinitiation complex. Mol Cell 31:337–346PubMedGoogle Scholar
  32. Evers R, Hammer A, Köck J, Jess W, Borst P, Memet S, Cornelissen AW (1989) Trypanosoma brucei contains two RNA polymerase II largest subunit genes with an altered C-terminal domain [published erratum appears in Cell 58:419]. Cell 56:585–597PubMedGoogle Scholar
  33. Fantoni A, Dare AO, Tschudi C (1994) RNA polymerase III-mediated transcription of the trypanosome U2 small nuclear RNA gene is controlled by both intragenic and extragenic regulatory elements. Mol Cell Biol 14:2021–2028PubMedGoogle Scholar
  34. Figueiredo LM, Cross GA (2010) Nucleosomes are depleted at the VSG expression site transcribed by RNA polymerase I in African trypanosomes. Eukaryot Cell 9:148–154PubMedGoogle Scholar
  35. Figueiredo LM, Janzen CJ, Cross GA (2008) A histone methyltransferase modulates antigenic variation in African trypanosomes. PLoS Biol 6:e161PubMedGoogle Scholar
  36. Gilinger G, Bellofatto V (2001) Trypanosome spliced leader RNA genes contain the first identified RNA polymerase II gene promoter in these organisms. Nucleic Acids Res 29:1556–1564PubMedGoogle Scholar
  37. Gilinger G, Luo H, Bellofatto V (2004) In vivo transcription analysis utilizing chromatin immunoprecipitation reveals a role for trypanosome transcription factor PBP-1 in RNA polymerase III-dependent transcription. Mol Biochem Parasitol 134:169–173PubMedGoogle Scholar
  38. Ginger ML, Blundell PA, Lewis AM, Browitt A, Günzl A, Barry JD (2002) Ex vivo and in vitro identification of a consensus promoter for VSG genes expressed by metacyclic-stage trypanosomes in the tsetse fly. Eukaryot Cell 1:1000–1009PubMedGoogle Scholar
  39. Goldshmidt H, Matas D, Kabi A, Carmi S, Hope R, Michaeli S (2010) Persistent ER stress induces the spliced leader RNA silencing pathway (SLS), leading to programmed cell death in Trypanosoma brucei. PLoS Pathog 6:e1000731PubMedGoogle Scholar
  40. Grummt I, Skinner JA (1985) Efficient transcription of a protein-coding gene from the RNA polymerase I promoter in transfected cells. Proc Natl Acad Sci USA 82:722–726PubMedGoogle Scholar
  41. Günzl A (2003) Transcription. In: Marr JJ, Nielsen TW, Komuniecki RW (eds) Molecular medical parasitology. Academic Press, London, pp 47–65Google Scholar
  42. Günzl A (2010) The pre-mRNA splicing machinery of trypanosomes: complex or simplified? Eukaryot Cell 9:1159–1170PubMedGoogle Scholar
  43. Günzl A, Schimanski B (2009) Tandem affinity purification of proteins. Curr Protoc Protein Sci Chapter 19:Unit 19.19Google Scholar
  44. Günzl A, Ullu E, Dörner M, Fragoso SP, Hoffmann KF, Milner JD, Morita Y, Nguu EK, Vanacova S, Wünsch S, Dare AO, Kwon H, Tschudi C (1997) Transcription of the Trypanosoma brucei spliced leader RNA gene is dependent only on the presence of upstream regulatory elements. Mol Biochem Parasitol 85:67–76PubMedGoogle Scholar
  45. Günzl A, Bruderer T, Laufer G, Schimanski B, Tu LC, Chung HM, Lee PT, Lee MG (2003) RNA polymerase I transcribes procyclin genes and variant surface glycoprotein gene expression sites in Trypanosoma brucei. Eukaryot Cell 2:542–551PubMedGoogle Scholar
  46. Günzl A, Vanhamme L, Myler PJ (2007) Transcription in trypanosomes: a different means to the end. In: Barry JD, Mottram JC, McCulloch R, Acosta-Serrano A (eds) Trypanosomes—after the genome. Horizon Press, Pittsburgh, pp 177–208Google Scholar
  47. Guo Z, Stiller JW (2004) Comparative genomics of cyclin-dependent kinases suggest co-evolution of the RNAP II C-terminal domain and CTD-directed CDKs. BMC Genomics 5:69PubMedGoogle Scholar
  48. Hartree D, Bellofatto V (1995) Essential components of the mini-exon gene promoter in the trypanosomatid Leptomonas seymouri. Mol Biochem Parasitol 71:27–39PubMedGoogle Scholar
  49. Henry RW, Sadowski CL, Kobayashi R, Hernandez N (1995) A TBP-TAF complex required for transcription of human snRNA genes by RNA polymerases II and III. Nature 374:653–656PubMedGoogle Scholar
  50. Hernandez N (2001) Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription. J Biol Chem 276:26733–26736PubMedGoogle Scholar
  51. Hertz-Fowler C, Figueiredo LM, Quail MA, Becker M, Jackson A, Bason N, Brooks K, Churcher C, Fahkro S, Goodhead I, Heath P, Kartvelishvili M, Mungall K, Harris D, Hauser H, Sanders M, Saunders D, Seeger K, Sharp S, Taylor JE, Walker D, White B, Young R, Cross GA, Rudenko G, Barry JD, Louis EJ, Berriman M (2008) Telomeric expression sites are highly conserved in Trypanosoma brucei. PLoS One 3:e3527PubMedGoogle Scholar
  52. Hughes K, Wand M, Foulston L, Young R, Harley K, Terry S, Ersfeld K, Rudenko G (2007) A novel ISWI is involved in VSG expression site downregulation in African trypanosomes. EMBO J 26:2400–2410PubMedGoogle Scholar
  53. Ibrahim BS, Kanneganti N, Rieckhof GE, Das A, Laurents DV, Palenchar JB, Bellofatto V, Wah DA (2009) Structure of the C-terminal domain of transcription factor IIB from Trypanosoma brucei. Proc Natl Acad Sci USA 106:13242–13247PubMedGoogle Scholar
  54. Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream MA, Adlem E, Aert R, Anupama A, Apostolou Z, Attipoe P, Bason N, Bauser C, Beck A, Beverley SM, Bianchettin G, Borzym K, Bothe G, Bruschi CV, Collins M, Cadag E, Ciarloni L, Clayton C, Coulson RM, Cronin A, Cruz AK, Davies RM, De Gaudenzi J, Dobson DE, Duesterhoeft A, Fazelina G, Fosker N, Frasch AC, Fraser A, Fuchs M, Gabel C, Goble A, Goffeau A, Harris D, Hertz-Fowler C, Hilbert H, Horn D, Huang Y, Klages S, Knights A, Kube M, Larke N, Litvin L, Lord A, Louie T, Marra M, Masuy D, Matthews K, Michaeli S, Mottram JC, Müller-Auer S, Munden H, Nelson S, Norbertczak H, Oliver K, O'neil S, Pentony M, Pohl TM, Price C, Purnelle B, Quail MA, Rabbinowitsch E, Reinhardt R, Rieger M, Rinta J, Robben J, Robertson L, Ruiz JC, Rutter S, Saunders D, Schäfer M, Schein J, Schwartz DC, Seeger K, Seyler A, Sharp S, Shin H, Sivam D, Squares R, Squares S, Tosato V, Vogt C, Volckaert G, Wambutt R, Warren T, Wedler H, Woodward J, Zhou S, Zimmermann W, Smith DF, Blackwell JM, Stuart KD, Barrell B, Myler PJ (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442PubMedGoogle Scholar
  55. Janz L, Clayton C (1994) The PARP and rRNA promoters of Trypanosoma brucei are composed of dissimilar sequence elements that are functionally interchangeable. Mol Cell Biol 14:5804–5811PubMedGoogle Scholar
  56. Jawhari A, Uhring M, De Carlo S, Crucifix C, Tocchini-Valentini G, Moras D, Schultz P, Poterszman A (2006) Structure and oligomeric state of human transcription factor TFIIE. EMBO Rep 7:500–505PubMedGoogle Scholar
  57. Jess W, Hammer A, Cornelissen AW (1989) Complete sequence of the gene encoding the largest subunit of RNA polymerase I of Trypanosoma brucei. FEBS Lett 249:123–128PubMedGoogle Scholar
  58. Kaiser FJ, Tavassoli K, Van den Bemd GJ, Chang GT, Horsthemke B, Moroy T, Lüdecke HJ (2003) Nuclear interaction of the dynein light chain LC8a with the TRPS1 transcription factor suppresses the transcriptional repression activity of TRPS1. Hum Mol Genet 12:1349–1358PubMedGoogle Scholar
  59. Kawahara T, Siegel TN, Ingram AK, Alsford S, Cross GA, Horn D (2008) Two essential MYST-family proteins display distinct roles in histone H4K10 acetylation and telomeric silencing in trypanosomes. Mol Microbiol 69:1054–1068PubMedGoogle Scholar
  60. Kelly S, Wickstead B, Gull K (2005) An in silico analysis of trypanosomatid RNA polymerases: insights into their unusual transcription. Biochem Soc Trans 33:1435–1437PubMedGoogle Scholar
  61. Köck J, Evers R, Cornelissen AW (1988) Structure and sequence of the gene for the largest subunit of trypanosomal RNA polymerase III. Nucleic Acids Res 16:8753–8772PubMedGoogle Scholar
  62. Kolev NG, Franklin JB, Carmi S, Shi H, Michaeli S, Tschudi C (2010) The transcriptome of the human pathogen Trypanosoma brucei at single-nucleotide resolution. PLoS Pathog 6:e1001090PubMedGoogle Scholar
  63. Kooter JM, Borst P (1984) Alpha-amanitin-insensitive transcription of variant surface glycoprotein genes provides further evidence for discontinuous transcription in trypanosomes. Nucleic Acids Res 12:9457–9472PubMedGoogle Scholar
  64. Kuhlman TC, Cho H, Reinberg D, Hernandez N (1999) The general transcription factors IIA, IIB, IIF, and IIE are required for RNA polymerase II transcription from the human U1 small nuclear RNA promoter. Mol Cell Biol 19:2130–2141PubMedGoogle Scholar
  65. Laufer G, Günzl A (2001) In-vitro competition analysis of procyclin gene and variant surface glycoprotein gene expression site transcription in Trypanosoma brucei. Mol Biochem Parasitol 113:55–65PubMedGoogle Scholar
  66. Lecordier L, Devaux S, Uzureau P, Dierick JF, Walgraffe D, Poelvoorde P, Pays E, Vanhamme L (2007) Characterization of a TFIIH homologue from Trypanosoma brucei. Mol Microbiol 64:1164–1181PubMedGoogle Scholar
  67. Lee MG (1996) An RNA polymerase II promoter in the hsp70 locus of Trypanosoma brucei. Mol Cell Biol 16:1220–1230PubMedGoogle Scholar
  68. Lee JH, Nguyen TN, Schimanski B, Günzl A (2007) Spliced leader RNA gene transcription in Trypanosoma brucei requires transcription factor TFIIH. Eukaryot Cell 6:641–649PubMedGoogle Scholar
  69. Lee JH, Jung HS, Günzl A (2009) Transcriptionally active TFIIH of the early-diverged eukaryote Trypanosoma brucei harbors two novel core subunits but not a cyclin-activating kinase complex. Nucleic Acids Res 37:3811–3820PubMedGoogle Scholar
  70. Lee JH, Cai G, Panigrahi AK, Dunham-Ems S, Nguyen TN, Radolf JD, Asturias FJ, Günzl A (2010) A TFIIH-associated mediator head is a basal factor of small nuclear spliced leader RNA gene transcription in early-diverged trypanosomes. Mol Cell Biol 30:5502–5513PubMedGoogle Scholar
  71. Li C, Harding GA, Parise J, McNamara-Schroeder KJ, Stumph WE (2004) Architectural arrangement of cloned proximal sequence element-binding protein subunits on Drosophila U1 and U6 snRNA gene promoters. Mol Cell Biol 24:1897–1906PubMedGoogle Scholar
  72. Liang XH, Uliel S, Hury A, Barth S, Doniger T, Unger R, Michaeli S (2005) A genome-wide analysis of C/D and H/ACA-like small nucleolar RNAs in Trypanosoma brucei reveals a trypanosome-specific pattern of rRNA modification. RNA 11:619–645PubMedGoogle Scholar
  73. Luo H, Gilinger G, Mukherjee D, Bellofatto V (1999) Transcription initiation at the TATA-less spliced leader RNA gene promoter requires at least two DNA-binding proteins and a tripartite architecture that includes an initiator element. J Biol Chem 274:31947–31954PubMedGoogle Scholar
  74. Lustig Y, Sheiner L, Vagima Y, Goldshmidt H, Das A, Bellofatto V, Michaeli S (2007) Spliced-leader RNA silencing: a novel stress-induced mechanism in Trypanosoma brucei. EMBO Rep 8:408–413PubMedGoogle Scholar
  75. Malik S, Roeder RG (2010) The metazoan mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 11:761–772PubMedGoogle Scholar
  76. Marchetti MA, Tschudi C, Silva E, Ullu E (1998) Physical and transcriptional analysis of the Trypanosoma brucei genome reveals a typical eukaryotic arrangement with close interspersionof RNA polymerase II- and III-transcribed genes. Nucleic Acids Res 26:3591–3598PubMedGoogle Scholar
  77. Martinez-Calvillo S, Yan S, Nguyen D, Fox M, Stuart K, Myler PJ (2003) Transcription of Leishmania major Friedlin chromosome 1 initiates in both directions within a single region. Mol Cell 11:1291–1299PubMedGoogle Scholar
  78. Martinez-Calvillo S, Nguyen D, Stuart K, Myler PJ (2004) Transcription initiation and termination on Leishmania major chromosome 3. Eukaryot Cell 3:506–517PubMedGoogle Scholar
  79. Martinez-Calvillo S, Saxena A, Green A, Leland A, Myler PJ (2007) Characterization of the RNA polymerase II and III complexes in Leishmania major. Int J Parasitol 37:491–502PubMedGoogle Scholar
  80. Martinez-Calvillo S, Vizuet-de-Rueda JC, Florencio-Martinez LE, Manning-Cela RG, Figueroa-Angulo EE (2010) Gene expression in trypanosomatid parasites. J Biomed Biotechnol 2010:525241PubMedGoogle Scholar
  81. Maxon ME, Goodrich JA, Tjian R (1994) Transcription factor IIE binds preferentially to RNA polymerase IIa and recruits TFIIH: a model for promoter clearance. Genes Dev 8:515–524PubMedGoogle Scholar
  82. McAndrew M, Graham S, Hartmann C, Clayton C (1998) Testing promoter activity in the trypanosome genome: isolation of a metacyclic-type VSG promoter, and unexpected insights into RNA polymerase II transcription. Exp Parasitol 90:65–76PubMedGoogle Scholar
  83. McConville MJ, Ferguson MA (1993) The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J 294:305–324PubMedGoogle Scholar
  84. Mottram JC, Bell SD, Nelson RG, Barry JD (1991) tRNAs of Trypanosoma brucei. Unusual gene organization and mitochondrial importation. J Biol Chem 266:18313–18317PubMedGoogle Scholar
  85. Nakaar V, Dare AO, Hong D, Ullu E, Tschudi C (1994) Upstream tRNA genes are essential for expression of small nuclear and cytoplasmic RNA genes in trypanosomes. Mol Cell Biol 14:6736–6742PubMedGoogle Scholar
  86. Nakaar V, Tschudi C, Ullu E (1995) An unusual liaison: small nuclear and cytoplasmic RNA genes team up with tRNA genes in trypanosomatid protozoa. Parasitol Today 11:225–228Google Scholar
  87. Nakaar V, Günzl A, Ullu E, Tschudi C (1997) Structure of the Trypanosoma brucei U6 snRNA gene promoter. Mol Biochem Parasitol 88:13–23PubMedGoogle Scholar
  88. Navarro M, Gull K (2001) A pol I transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei. Nature 414:759–763PubMedGoogle Scholar
  89. Nelson RG, Parsons M, Barr PJ, Stuart K, Selkirk M, Agabian N (1983) Sequences homologous to the variant antigen mRNA spliced leader are located in tandem repeats and variable orphons in Trypanosoma brucei. Cell 34:901–909PubMedGoogle Scholar
  90. Nett IR, Martin DM, Miranda-Saavedra D, Lamont D, Barber JD, Mehlert A, Ferguson MA (2009) The phosphoproteome of bloodstream form Trypanosoma brucei, causative agent of African sleeping sickness. Mol Cell Proteomics 8:1527–1538PubMedGoogle Scholar
  91. Nguyen TN, Schimanski B, Zahn A, Klumpp B, Günzl A (2006) Purification of an eight subunit RNA polymerase I complex in Trypanosoma brucei. Mol Biochem Parasitol 149:27–37PubMedGoogle Scholar
  92. Nguyen TN, Schimanski B, Günzl A (2007) Active RNA polymerase I of Trypanosoma brucei harbors a novel subunit essential for transcription. Mol Cell Biol 27:6254–6263PubMedGoogle Scholar
  93. Nikolov DB, Chen H, Halay ED, Usheva AA, Hisatake K, Lee DK, Roeder RG, Burley SK (1995) Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature 377:119–128PubMedGoogle Scholar
  94. Nunes LR, Carvalho MR, Shakarian AM, Buck GA (1997) The transcription promoter of the spliced leader gene from Trypanosoma cruzi. Gene 188:157–168PubMedGoogle Scholar
  95. Orphanides G, Wu WH, Lane WS, Hampsey M, Reinberg D (1999) The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400:284–288PubMedGoogle Scholar
  96. Palenchar JB, Bellofatto V (2006) Gene transcription in trypanosomes. Mol Biochem Parasitol 146:135–141PubMedGoogle Scholar
  97. Palenchar JB, Liu W, Palenchar PM, Bellofatto V (2006) A divergent transcription factor TFIIB in trypanosomes is required for RNA polymerase II-dependent spliced leader RNA transcription and cell viability. Eukaryot Cell 5:293–300PubMedGoogle Scholar
  98. Park S, Nguyen TN, Kirkham JK, Lee J, Günzl A (2011) Transcription by the multifunctional RNA polymerase I in Trypanosoma brucei functions independently of RPB7. Mol Biochem Parasitol 180:35–42PubMedGoogle Scholar
  99. Park S, Nguyen TN, Günzl A (2012) Development of an efficient in vitro transcription system for bloodstream form Trypanosoma brucei reveals life cycle-independent functionality of class I transcription factor A. Mol Biochem Parasitol 181:29–36PubMedGoogle Scholar
  100. Parsons M, Worthey EA, Ward PN, Mottram JC (2005) Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics 6:127PubMedGoogle Scholar
  101. Patrick KL, Luz PM, Ruan JP, Shi H, Ullu E, Tschudi C (2008) Genomic rearrangements and transcriptional analysis of the spliced leader-associated retrotransposon in RNA interference-deficient Trypanosoma brucei. Mol Microbiol 67:435–447PubMedGoogle Scholar
  102. Penate X, Lopez-Farfan D, Landeira D, Wentland A, Vidal I, Navarro M (2009) RNA pol II subunit RPB7 is required for RNA pol I-mediated transcription in Trypanosoma brucei. EMBO Rep 10:252–257PubMedGoogle Scholar
  103. Pham VP, Qi CC, Gottesdiener KM (1996) A detailed mutational analysis of the VSG gene expression site promoter. Mol Biochem Parasitol 75:241–254PubMedGoogle Scholar
  104. Respuela P, Ferella M, Rada-Iglesias A, Aslund L (2008) Histone acetylation and methylation at sites initiating divergent polycistronic transcription in Trypanosoma cruzi. J Biol Chem 283:15884–15892PubMedGoogle Scholar
  105. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032PubMedGoogle Scholar
  106. Roditi I, Clayton C (1999) An unambiguous nomenclature for the major surface glycoproteins of the procyclic form of Trypanosoma brucei. Mol Biochem Parasitol 103:99–100PubMedGoogle Scholar
  107. Ruan JP, Arhin GK, Ullu E, Tschudi C (2004) Functional characterization of a Trypanosoma brucei TATA-binding protein-related factor points to a universal regulator of transcription in trypanosomes. Mol Cell Biol 24:9610–9618PubMedGoogle Scholar
  108. Rudenko G, Chung HM, Pham VP, Van der Ploeg LH (1991) RNA polymerase I can mediate expression of CAT and neo protein- coding genes in Trypanosoma brucei. EMBO J 10:3387–3397PubMedGoogle Scholar
  109. Ruepp S, Furger A, Kurath U, Renggli CK, Hemphill A, Brun R, Roditi I (1997) Survival of Trypanosoma brucei in the tsetse fly is enhanced by the expression of specific forms of procyclin. J Cell Biol 137:1369–1379PubMedGoogle Scholar
  110. Schimanski B, Klumpp B, Laufer G, Marhöfer RJ, Selzer PM, Günzl A (2003) The second largest subunit of Trypanosoma brucei’s multifunctional RNA polymerase I has a unique N-terminal extension domain. Mol Biochem Parasitol 126:193–200PubMedGoogle Scholar
  111. Schimanski B, Laufer G, Gontcharova L, Günzl A (2004a) The Trypanosoma brucei spliced leader RNA and rRNA gene promoters have interchangeable TbSNAP50-binding elements. Nucleic Acids Res 32:700–709PubMedGoogle Scholar
  112. Schimanski B, Ma L, Günzl A (2004b) Failure to detect binding of Trypanosoma brucei SNAPc to U2 and U6 snRNA gene sequences by in vitro transcription competition and pull-down assays. Mol Biochem Parasitol 137:293–296PubMedGoogle Scholar
  113. Schimanski B, Nguyen TN, Günzl A (2005a) Characterization of a multisubunit transcription factor complex essential for spliced-leader RNA gene transcription in Trypanosoma brucei. Mol Cell Biol 25:7303–7313PubMedGoogle Scholar
  114. Schimanski B, Nguyen TN, Günzl A (2005b) Highly efficient tandem affinity purification of trypanosome protein complexes based on a novel epitope combination. Eukaryot Cell 4:1942–1950PubMedGoogle Scholar
  115. Schimanski B, Brandenburg J, Nguyen TN, Caimano MJ, Günzl A (2006) A TFIIB-like protein is indispensable for spliced leader RNA gene transcription in Trypanosoma brucei. Nucleic Acids Res 34:1676–1684PubMedGoogle Scholar
  116. Schramm L, Hernandez N (2002) Recruitment of RNA polymerase III to its target promoters. Genes Dev 16:2593–2620PubMedGoogle Scholar
  117. Schultz P, Fribourg S, Poterszman A, Mallouh V, Moras D, Egly JM (2000) Molecular structure of human TFIIH. Cell 102:599–607PubMedGoogle Scholar
  118. Schwede A, Jones N, Engstler M, Carrington M (2010) The VSG C-terminal domain is inaccessible to antibodies on live trypanosomes. Mol Biochem Parasitol 175:201–204PubMedGoogle Scholar
  119. Sherman DR, Janz L, Hug M, Clayton C (1991) Anatomy of the PARP gene promoter of Trypanosoma brucei. EMBO J 10:3379–3386PubMedGoogle Scholar
  120. Siegel TN, Hekstra DR, Kemp LE, Figueiredo LM, Lowell JE, Fenyo D, Wang X, Dewell S, Cross GA (2009) Four histone variants mark the boundaries of polycistronic transcription units in Trypanosoma brucei. Genes Dev 23:1063–1076PubMedGoogle Scholar
  121. Sikorski TW, Buratowski S (2009) The basal initiation machinery: beyond the general transcription factors. Curr Opin Cell Biol 21:344–351PubMedGoogle Scholar
  122. Smith JL, Levin JR, Agabian N (1989a) Molecular characterization of the Trypanosoma brucei RNA polymerase I and III largest subunit genes. J Biol Chem 264:18091–18099PubMedGoogle Scholar
  123. Smith JL, Levin JR, Ingles CJ, Agabian N (1989b) In trypanosomes the homolog of the largest subunit of RNA polymerase II is encoded by two genes and has a highly unusual C-terminal domain structure. Cell 56:815–827PubMedGoogle Scholar
  124. Stanne TM, Rudenko G (2010) Active VSG expression sites in Trypanosoma brucei are depleted of nucleosomes. Eukaryot Cell 9:136–147PubMedGoogle Scholar
  125. Stewart M, Haile S, Jha BA, Cristodero M, Li CH, Clayton C (2010) Processing of a phosphoglycerate kinase reporter mRNA in Trypanosoma brucei is not coupled to transcription by RNA polymerase II. Mol Biochem Parasitol 172:99–106PubMedGoogle Scholar
  126. Sturm NR, Yu MC, Campbell DA (1999) Transcription termination and 3′-End processing of the spliced leader RNA in kinetoplastids. Mol Cell Biol 19:1595–1604PubMedGoogle Scholar
  127. Takagi Y, Kornberg RD (2006) Mediator as a general transcription factor. J Biol Chem 281:80–89PubMedGoogle Scholar
  128. Takagi Y, Calero G, Komori H, Brown JA, Ehrensberger AH, Hudmon A, Asturias F, Kornberg RD (2006) Head module control of mediator interactions. Mol Cell 23:355–364PubMedGoogle Scholar
  129. Thomas MC, Chiang CM (2006) The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 41:105–178PubMedGoogle Scholar
  130. Thomas S, Green A, Sturm NR, Campbell DA, Myler PJ (2009) Histone acetylations mark origins of polycistronic transcription in Leishmania major. BMC Genomics 10:e152Google Scholar
  131. Tsai FT, Sigler PB (2000) Structural basis of preinitiation complex assembly on human pol II promoters. EMBO J 19:25–36PubMedGoogle Scholar
  132. Uzureau P, Daniels JP, Walgraffe D, Wickstead B, Pays E, Gull K, Vanhamme L (2008) Identification and characterization of two trypanosome TFIIS proteins exhibiting particular domain architectures and differential nuclear localizations. Mol Microbiol 69:1121–1136PubMedGoogle Scholar
  133. Vanhamme L, Pays A, Tebabi P, Alexandre S, Pays E (1995) Specific binding of proteins to the noncoding strand of a crucial element of the variant surface glycoprotein, procyclin, and ribosomal promoters of Trypanosoma brucei. Mol Cell Biol 15:5598–5606PubMedGoogle Scholar
  134. Vanhamme L, Poelvoorde P, Pays A, Tebabi P, Xong HV, Pays E (2000) Differential RNA elongation controls the variant surface glycoprotein gene expression sites of Trypanosoma brucei. Mol Microbiol 36:328–340PubMedGoogle Scholar
  135. Walgraffe D, Devaux S, Lecordier L, Dierick JF, Dieu M, Van Den AJ, Pays E, Vanhamme L (2005) Characterization of subunits of the RNA polymerase I complex in Trypanosoma brucei. Mol Biochem Parasitol 139:249–260PubMedGoogle Scholar
  136. Wang QP, Kawahara T, Horn D (2010) Histone deacetylases play distinct roles in telomeric VSG expression site silencing in African trypanosomes. Mol Microbiol 77:1237–1245PubMedGoogle Scholar
  137. Werner F (2007) Structure and function of archaeal RNA polymerases. Mol Microbiol 65:1395–1404PubMedGoogle Scholar
  138. Wright JR, Siegel TN, Cross GA (2010) Histone H3 trimethylated at lysine 4 is enriched at probable transcription start sites in Trypanosoma brucei. Mol Biochem Parasitol 172:141–144PubMedGoogle Scholar
  139. Yang X, Figueiredo LM, Espinal A, Okubo E, Li B (2009) RAP1 is essential for silencing telomeric variant surface glycoprotein genes in Trypanosoma brucei. Cell 137:99–109PubMedGoogle Scholar
  140. Yeh TY, Chuang JZ, Sung CH (2005) Dynein light chain rp3 acts as a nuclear matrix-associated transcriptional modulator in a dynein-independent pathway. J Cell Sci 118:3431–3443PubMedGoogle Scholar
  141. Yoon JB, Murphy S, Bai L, Wang Z, Roeder RG (1995) Proximal sequence element-binding transcription factor (PTF) is a multisubunit complex required for transcription of both RNA polymerase II- and RNA polymerase III-dependent small nuclear RNA genes. Mol Cell Biol 15:2019–2027PubMedGoogle Scholar
  142. Yu MC, Sturm NR, Saito RM, Roberts TG, Campbell DA (1998) Single nucleotide resolution of promoter activity and protein binding for the Leishmania tarentolae spliced leader RNA gene. Mol Biochem Parasitol 94:265–281PubMedGoogle Scholar
  143. Ziegelbauer K, Overath P (1993) Organization of two invariant surface glycoproteins in the surface coat of Trypanosoma brucei. Infect Immun 61:4540–4545PubMedGoogle Scholar
  144. Zomerdijk JC, Kieft R, Borst P (1991) Efficient production of functional mRNA mediated by RNA polymerase I in Trypanosoma brucei. Nature 353:772–775PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Genetics and Developmental BiologyUniversity of Connecticut Health CenterFarmingtonUSA
  2. 2.Department of Molecular, Microbial and Structural BiologyUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations