RNA-Seq Analysis of the Transcriptome of Trypanosoma brucei

Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 28)


Four recent publications used next generation sequencing to analyse the transcriptome of Trypanosoma brucei. These have produced a wealth of data that have refined and, to some extent, redefined our concept of the genome. At the same time, they provide a welcome opportunity to re-examine older publications and place them in a post-genomic context.


RNA-Seq Spliced leader trapping Digital gene expression 



We gratefully acknowledge the financial support of the Swiss National Science Foundation, the Howard Hughes Medical Institute and the Canton of Bern. Annette Macleod, George Cross, Nicolai Siegel and Simon Hänni are thanked for their helpful comments on the manuscript.


  1. Alsford S, Eckert S, Baker N, Glover L, Sanchez-Flores A, Leung KF, Turner DJ, Field MC, Berriman M, Horn D (2012) High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature 482(7384):232–236. doi: 10.1038/nature10771Google Scholar
  2. Ashibe B, Hirai T, Higashi K, Sekimizu K, Motojima K (2007) Dual subcellular localization in the endoplasmic reticulum and peroxisomes and a vital role in protecting against oxidative stress of fatty aldehyde dehydrogenase are achieved by alternative splicing. J Biol Chem 282:20763–20773PubMedGoogle Scholar
  3. Auerbach RK, Euskirchen G, Rozowsky J, Lamarre-Vincent N, Moqtaderi Z, Lefrancois P, Struhl K, Gerstein M, Snyder M (2009) Mapping accessible chromatin regions using Sono-Seq. Proc Natl Acad Sci USA 106:14926–14931PubMedGoogle Scholar
  4. Belli SI, Monnerat S, Schaff C, Masina S, Noll T, Myler PJ, Stuart K, Fasel N (2003) Sense and antisense transcripts in the histone H1 (HIS-1) locus of Leishmania major. Int J Parasitol 33:965–975PubMedGoogle Scholar
  5. Benabdellah K, Gonzalez-Rey E, Gonzalez A (2007) Alternative trans-splicing of the Trypanosoma cruzi LYT1 gene transcript results in compartmental and functional switch for the encoded protein. Mol Microbiol 65:1559–1567PubMedGoogle Scholar
  6. Benz C, Nilsson D, Andersson B, Clayton C, Guilbride DL (2005) Messenger RNA processing sites in Trypanosoma brucei. Mol Biochem Parasitol 143:125–134PubMedGoogle Scholar
  7. Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B et al (2005) The genome of the African Trypanosome Trypanosoma brucei. Science 309:416–422PubMedGoogle Scholar
  8. Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132:311–322PubMedGoogle Scholar
  9. Brems S, Guilbride DL, Gundlesdodjir-Planck D, Busold C, Luu VD, Schanne M, Hoheisel J, Clayton C (2005) The transcriptomes of Trypanosoma brucei Lister 427 and TREU927 bloodstream and procyclic trypomastigotes. Mol Biochem Parasitol 139:163–172PubMedGoogle Scholar
  10. Brunner AL, Johnson DS, Kim SW, Valouev A, Reddy TE, Neff NF, Anton E, Medina C, Nguyen L, Chiao E et al (2009) Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res 19:1044–1056PubMedGoogle Scholar
  11. Bütikofer P, Serricchio M (2012) An essential bacterial-type cardiolipin synthase mediates cardiolipin formation in a eukaryote. Proc Natl Acad Sci USA, epub ahead of printGoogle Scholar
  12. Clayton C, Shapira M (2007) Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol 156:93–101PubMedGoogle Scholar
  13. Cliffe LJ, Siegel TN, Marshall M, Cross GA, Sabatini R (2010) Two thymidine hydroxylases differentially regulate the formation of glucosylated DNA at regions flanking polymerase II polycistronic transcription units throughout the genome of Trypanosoma brucei. Nucleic Acids Res 38:3923–3935PubMedGoogle Scholar
  14. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219PubMedGoogle Scholar
  15. Costa V, Angelini C, De Feis I, Ciccodicola A (2010) Uncovering the complexity of transcriptomes with RNA-Seq. J Biomed Biotechnol 2010:853916PubMedGoogle Scholar
  16. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190PubMedGoogle Scholar
  17. Degrave WM, Melville S, Ivens A, Aslett M (2001) Parasite genome initiatives. Int J Parasitol 31:532–536PubMedGoogle Scholar
  18. Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, Graf S, Johnson N, Herrero J, Tomazou EM et al (2008) A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 26:779–785PubMedGoogle Scholar
  19. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138PubMedGoogle Scholar
  20. El-Sayed NM, Alarcon CM, Beck JC, Sheffield VC, Donelson JE (1995) cDNA expressed sequence tags of Trypanosoma brucei rhodesiense provide new insights into the biology of the parasite. Mol Biochem Parasitol 73:75–90PubMedGoogle Scholar
  21. El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran A-N, Ghedin E, Worthey EA, Delcher AL, Blandin G et al (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415PubMedGoogle Scholar
  22. Erondu NE, Donelson JE (1992) Differential expression of two mRNAs from a single gene encoding an HMG1-like DNA binding protein of African trypanosomes. Mol Biochem Parasitol 51:111–118PubMedGoogle Scholar
  23. Estevez AM (2008) The RNA-binding protein TbDRBD3 regulates the stability of a specific subset of mRNAs in trypanosomes. Nucleic Acids Res 36:4573–4586PubMedGoogle Scholar
  24. Fernández-Moya SM, Estévez AM (2010) Posttranscriptional control and the role of RNA-binding proteins in gene regulation in trypanosomatid protozoan parasites. Wiley Interdiscip Rev RNA 1:34–46PubMedGoogle Scholar
  25. Figueiredo LM, Cross GA (2010) Nucleosomes are depleted at the VSG expression site transcribed by RNA polymerase I in African trypanosomes. Eukaryot Cell 9:148–154PubMedGoogle Scholar
  26. Flück C, Salomone JY, Kurath U, Roditi I (2003) Cycloheximide-mediated accumulation of transcripts from a procyclin expression site depends on the intergenic region. Mol Biochem Parasitol 127:93–97PubMedGoogle Scholar
  27. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465PubMedGoogle Scholar
  28. Fu X, Fu N, Guo S, Yan Z, Xu Y, Hu H, Menzel C, Chen W, Li Y, Zeng R et al (2009) Estimating accuracy of RNA-Seq and microarrays with proteomics. BMC Genomics 10:161PubMedGoogle Scholar
  29. Fuller CW, Middendorf LR, Benner SA, Church GM, Harris T, Huang X, Jovanovich SB, Nelson JR, Schloss JA, Schwartz DC et al (2009) The challenges of sequencing by synthesis. Nat Biotechnol 27:1013–1023PubMedGoogle Scholar
  30. Furger A, Schurch N, Kurath U, Roditi I (1997) Elements in the 3′ untranslated region of procyclin mRNA regulate expression in insect forms of Trypanosoma brucei by modulating RNA stability and translation. Mol Cell Biol 17:4372–4380PubMedGoogle Scholar
  31. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD (2007) FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res 17:877–885PubMedGoogle Scholar
  32. Goren A, Ozsolak F, Shoresh N, Ku M, Adli M, Hart C, Gymrek M, Zuk O, Regev A, Milos PM et al (2010) Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nat Methods 7:47–49PubMedGoogle Scholar
  33. Haanstra JR, Stewart M, Luu VD, van Tuijl A, Westerhoff HV, Clayton C, Bakker BM (2008) Control and regulation of gene expression: quantitative analysis of the expression of phosphoglycerate kinase in bloodstream form Trypanosoma brucei. J Biol Chem 283:2495–2507PubMedGoogle Scholar
  34. Haenni S, Studer E, Burkard GS, Roditi I (2009) Bidirectional silencing of RNA polymerase I transcription by a strand switch region in Trypanosoma brucei. Nucleic Acids Res 37:5007–5018PubMedGoogle Scholar
  35. Haile S, Papadopoulou B (2007) Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Curr Opin Microbiol 10:569–577PubMedGoogle Scholar
  36. Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I, Causey M, Colonell J, Dimeo J, Efcavitch JW et al (2008) Single-molecule DNA sequencing of a viral genome. Science 320:106–109PubMedGoogle Scholar
  37. Hehl A, Vassella E, Braun R, Roditi I (1994) A conserved stem-loop structure in the 3′ untranslated region of procyclin mRNAs regulates expression in Trypanosoma brucei. Proc Natl Acad Sci USA 91:370–374PubMedGoogle Scholar
  38. Helm JR, Wilson ME, Donelson JE (2008) Different trans RNA splicing events in bloodstream and procyclic Trypanosoma brucei. Mol Biochem Parasitol 159:134–137PubMedGoogle Scholar
  39. Hesselberth JR, Chen X, Zhang Z, Sabo PJ, Sandstrom R, Reynolds AP, Thurman RE, Neph S, Kuehn MS, Noble WS et al (2009) Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat Methods 6:283–289PubMedGoogle Scholar
  40. Huang J, Van der Ploeg LH (1991) Requirement of a polypyrimidine tract for trans-splicing in trypanosomes: discriminating the PARP promoter from the immediately adjacent 3′ splice acceptor site. EMBO J 10:3877–3885PubMedGoogle Scholar
  41. Hug M, Hotz HR, Hartmann C, Clayton C (1994) Hierarchies of RNA-processing signals in a trypanosome surface antigen mRNA precursor. Mol Cell Biol 14:7428–7435PubMedGoogle Scholar
  42. Ingolia NT (2010) Genome-wide translational profiling by ribosome footprinting. Methods Enzymol 470:119–142PubMedGoogle Scholar
  43. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223PubMedGoogle Scholar
  44. Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream M-A, Adlem E, Aert R et al (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442PubMedGoogle Scholar
  45. Jensen BC, Sivam D, Kifer CT, Myler PJ, Parsons M (2009) Widespread variation in transcript abundance within and across developmental stages of Trypanosoma brucei. BMC Genomics 10:482PubMedGoogle Scholar
  46. Kabani S, Fenn K, Ross A, Ivens A, Smith TK, Ghazal P, Matthews K (2009) Genome-wide expression profiling of in vivo-derived bloodstream parasite stages and dynamic analysis of mRNA alterations during synchronous differentiation in Trypanosoma brucei. BMC Genomics 10:427PubMedGoogle Scholar
  47. Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y, LeProust EM, Hughes TR, Lieb JD, Widom J et al (2009) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458:362–366PubMedGoogle Scholar
  48. Koenig-Martin E, Yamage M, Roditi I (1992) A procyclin-associated gene in Trypanosoma brucei encodes a polypeptide related to ESAG 6 and 7 proteins. Mol Biochem Parasitol 55:135–145PubMedGoogle Scholar
  49. Kolev NG, Franklin JB, Carmi S, Shi H, Michaeli S, Tschudi C (2010) The transcriptome of the human pathogen Trypanosoma brucei at single-nucleotide resolution. PLoS Pathog 6(9):pii: e1001090Google Scholar
  50. König J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, Turner DJ, Luscombe NM, Ule J (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17:909–915PubMedGoogle Scholar
  51. Korlach J, Bjornson KP, Chaudhuri BP, Cicero RL, Flusberg BA, Gray JJ, Holden D, Saxena R, Wegener J, Turner SW (2010) Real-time DNA sequencing from single polymerase molecules. Methods Enzymol 472:431–455PubMedGoogle Scholar
  52. Kramer S, Carrington M (2010) Trans-acting proteins regulating mRNA maturation, stability and translation in trypanosomatids. Trends Parasitol 27:23–30PubMedGoogle Scholar
  53. Leinonen R, Sugawara H, Shumway M (2010) The sequence read archive. Nucleic Acids Res 39(Database issue):D19–D21PubMedGoogle Scholar
  54. Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, Darnell JC, Darnell RB (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469PubMedGoogle Scholar
  55. Liniger M, Bodenmuller K, Pays E, Gallati S, Roditi I (2001) Overlapping sense and antisense transcription units in Trypanosoma brucei. Mol Microbiol 40:869–878PubMedGoogle Scholar
  56. Lipson D, Raz T, Kieu A, Jones DR, Giladi E, Thayer E, Thompson JF, Letovsky S, Milos P, Causey M (2009) Quantification of the yeast transcriptome by single-molecule sequencing. Nat Biotechnol 27:652–658PubMedGoogle Scholar
  57. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536PubMedGoogle Scholar
  58. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322PubMedGoogle Scholar
  59. Lopez V, Kelleher SL (2009) Zinc transporter-2 (ZnT2) variants are localized to distinct subcellular compartments and functionally transport zinc. Biochem J 422:43–52PubMedGoogle Scholar
  60. Mair G, Shi H, Li H, Djikeng A, Aviles HO, Bishop JR, Falcone FH, Gavrilescu C, Montgomery JL, Santori MI et al (2000) A new twist in trypanosome RNA metabolism: cis-splicing of pre-mRNA. RNA 6:163–169PubMedGoogle Scholar
  61. Mao Y, Najafabadi HS, Salavati R (2009) Genome-wide computational identification of functional RNA elements in Trypanosoma brucei. BMC Genomics 10:355PubMedGoogle Scholar
  62. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402PubMedGoogle Scholar
  63. Marguerat S, Bahler J (2010) RNA-seq: from technology to biology. Cell Mol Life Sci 67:569–579PubMedGoogle Scholar
  64. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517PubMedGoogle Scholar
  65. Matthews KR, Tschudi C, Ullu E (1994) A common pyrimidine-rich motif governs trans-splicing and polyadenylation of tubulin polycistronic pre-mRNA in trypanosomes. Genes Dev 8:491–501PubMedGoogle Scholar
  66. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46PubMedGoogle Scholar
  67. Militello KT, Wang P, Jayakar SK, Pietrasik RL, Dupont CD, Dodd K, King AM, Valenti PR (2008) African trypanosomes contain 5-methylcytosine in nuclear DNA. Eukaryot Cell 7:2012–2016PubMedGoogle Scholar
  68. Minning TA, Weatherly DB, Atwood J 3rd, Orlando R, Tarleton RL (2009) The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi. BMC Genomics 10:370PubMedGoogle Scholar
  69. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628PubMedGoogle Scholar
  70. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349PubMedGoogle Scholar
  71. Nilsson D, Gunasekera K, Mani J, Osteras M, Farinelli L, Baerlocher L, Roditi I, Ochsenreiter T (2010) Spliced leader trapping reveals widespread alternative splicing patterns in the highly dynamic transcriptome of Trypanosoma brucei. PLoS Pathog 6(8):pii: e1001037Google Scholar
  72. Otto TD, Wilinski D, Assefa S, Keane TM, Sarry LR, Bohme U, Lemieux J, Barrell B, Pain A, Berriman M et al (2010) New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq. Mol Microbiol 76:12–24PubMedGoogle Scholar
  73. Ouellette M, Papadopoulou B (2009) Coordinated gene expression by post-transcriptional regulons in African trypanosomes. J Biol 8:100PubMedGoogle Scholar
  74. Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE, McInerney P, Thompson JF, Bowers J, Jarosz M, Milos PM (2009) Direct RNA sequencing. Nature 461:814–818PubMedGoogle Scholar
  75. Ozsolak F, Goren A, Gymrek M, Guttman M, Regev A, Bernstein BE, Milos PM (2010a) Digital transcriptome profiling from attomole-level RNA samples. Genome Res 20:519–525PubMedGoogle Scholar
  76. Ozsolak F, Ting DT, Wittner BS, Brannigan BW, Paul S, Bardeesy N, Ramaswamy S, Milos PM, Haber DA (2010b) Amplification-free digital gene expression profiling from minute cell quantities. Nat Methods 7:619–621PubMedGoogle Scholar
  77. Panigrahi AK, Ogata Y, Zikova A, Anupama A, Dalley RA, Acestor N, Myler PJ, Stuart KD (2009) A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics 9:434–450PubMedGoogle Scholar
  78. Pasion SG, Hines JC, Ou X, Mahmood R, Ray DS (1996) Sequences within the 5′ untranslated region regulate the levels of a kinetoplast DNA topoisomerase mRNA during the cell cycle. Mol Cell Biol 16:6724–6735PubMedGoogle Scholar
  79. Ponts N, Harris EY, Lonardi S, Le Roch KG (2010a) Nucleosome occupancy at transcription start sites in the human malaria parasite: a hard-wired evolution of virulence? Infect Genet Evol 11(4):716–724PubMedGoogle Scholar
  80. Ponts N, Harris EY, Prudhomme J, Wick I, Eckhardt-Ludka C, Hicks GR, Hardiman G, Lonardi S, Le Roch KG (2010b) Nucleosome landscape and control of transcription in the human malaria parasite. Genome Res 20:228–238PubMedGoogle Scholar
  81. Pushkarev D, Neff NF, Quake SR (2009) Single-molecule sequencing of an individual human genome. Nat Biotechnol 27:847–852PubMedGoogle Scholar
  82. Rettig J, Wang Y, Schneider A, Ochsenreiter T (2012) Dual targeting of isoleucyl-tRNA synthetase in Trypanosoma brucei is mediated through alternative trans-splicing. Nucleic Acids Res 4(3):1299–1306Google Scholar
  83. Queiroz R, Benz C, Fellenberg K, Hoheisel JD, Clayton C (2009) Transcriptome analysis of differentiating trypanosomes reveals the existence of multiple post-transcriptional regulons. BMC Genomics 10:495PubMedGoogle Scholar
  84. Respuela P, Ferella M, Rada-Iglesias A, Aslund L (2008) Histone acetylation and methylation at sites initiating divergent polycistronic transcription in Trypanosoma cruzi. J Biol Chem 283:15884–15892PubMedGoogle Scholar
  85. Rochette A, Raymond F, Ubeda JM, Smith M, Messier N, Boisvert S, Rigault P, Corbeil J, Ouellette M, Papadopoulou B (2008) Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. BMC Genomics 9:255PubMedGoogle Scholar
  86. Rojas MV, Galanti N (1990) DNA methylation in Trypanosoma cruzi. FEBS Lett 263:113–116PubMedGoogle Scholar
  87. Rout MP, Field MC (2001) Isolation and characterization of subnuclear compartments from Trypanosoma brucei. Identification of a major repetitive nuclear lamina component. J Biol Chem 276:38261–38271PubMedGoogle Scholar
  88. Rudenko G, Blundell PA, Taylor MC, Kieft R, Borst P (1994) VSG gene expression site control in insect form Trypanosoma brucei. EMBO J 13:5470–5482PubMedGoogle Scholar
  89. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedGoogle Scholar
  90. Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19:R227–R240PubMedGoogle Scholar
  91. Schlimme W, Burri M, Bender K, Betschart B, Hecker H (1993) Trypanosoma brucei brucei: differences in the nuclear chromatin of bloodstream forms and procyclic culture forms. Parasitology 107(Pt 3):237–247PubMedGoogle Scholar
  92. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132:887–898PubMedGoogle Scholar
  93. Schürch N, Hehl A, Vassella E, Braun R, Roditi I (1994) Accurate polyadenylation of procyclin mRNAs in Trypanosoma brucei is determined by pyrimidine-rich elements in the intergenic regions. Mol Cell Biol 14:3668–3675PubMedGoogle Scholar
  94. Schürch N, Furger A, Kurath U, Roditi I (1997) Contributions of the procyclin 3′ untranslated region and coding region to the regulation of expression in bloodstream forms of Trypanosoma brucei. Mol Biochem Parasitol 89:109–121PubMedGoogle Scholar
  95. Shaked H, Wachtel C, Tulinski P, Yahia NH, Barda O, Darzynkiewicz E, Nilsen TW, Michaeli S (2010) Establishment of an in vitro trans-splicing system in Trypanosoma brucei that requires endogenous spliced leader RNA. Nucleic Acids Res 38:e114PubMedGoogle Scholar
  96. Shivaswamy S, Bhinge A, Zhao Y, Jones S, Hirst M, Iyer VR (2008) Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biol 6:e65PubMedGoogle Scholar
  97. Siegel TN, Tan KS, Cross GA (2005) Systematic study of sequence motifs for RNA trans splicing in Trypanosoma brucei. Mol Cell Biol 25:9586–9594PubMedGoogle Scholar
  98. Siegel TN, Hekstra DR, Kemp LE, Figueiredo LM, Lowell JE, Fenyo D, Wang X, Dewell S, Cross GA (2009) Four histone variants mark the boundaries of polycistronic transcription units in Trypanosoma brucei. Genes Dev 23:1063–1076PubMedGoogle Scholar
  99. Siegel TN, Hekstra DR, Wang X, Dewell S, Cross GA (2010) Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res 38:4946–4957PubMedGoogle Scholar
  100. Song L, Crawford GE (2010) DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc 2010(2):pdb prot5384PubMedGoogle Scholar
  101. Srividya G, Duncan R, Sharma P, Raju BV, Nakhasi HL, Salotra P (2007) Transcriptome analysis during the process of in vitro differentiation of Leishmania donovani using genomic microarrays. Parasitology 134:1527–1539PubMedGoogle Scholar
  102. Stanne TM, Rudenko G (2010) Active VSG expression sites in Trypanosoma brucei are depleted of nucleosomes. Eukaryot Cell 9:136–147PubMedGoogle Scholar
  103. Stern MZ, Gupta SK, Salmon-Divon M, Haham T, Barda O, Levi S, Wachtel C, Nilsen TW, Michaeli S (2009) Multiple roles for polypyrimidine tract binding (PTB) proteins in trypanosome RNA metabolism. RNA 15:648–665PubMedGoogle Scholar
  104. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6:377–382PubMedGoogle Scholar
  105. Thomas S, Green A, Sturm NR, Campbell DA, Myler PJ (2009) Histone acetylations mark origins of polycistronic transcription in Leishmania major. BMC Genomics 10:152PubMedGoogle Scholar
  106. Thompson JF, Steinmann KE (2010) Single molecule sequencing with a HeliScope genetic analysis system. Curr Protoc Mol Biol Chapter 7:Unit7.10PubMedGoogle Scholar
  107. Urwyler S, Vassella E, Van Den Abbeele J, Renggli CK, Blundell P, Barry JD, Roditi I (2005) Expression of procyclin mRNAs during cyclical transmission of Trypanosoma brucei. PLoS Pathog 1:e22PubMedGoogle Scholar
  108. Vassella E, Braun R, Roditi I (1994) Control of polyadenylation and alternative splicing of transcripts from adjacent genes in a procyclin expression site: a dual role for polypyrimidine tracts in trypanosomes? Nucleic Acids Res 22:1359–1364PubMedGoogle Scholar
  109. Veitch NJ, Johnson PC, Trivedi U, Terry S, Wildridge D, MacLeod A (2010) Digital gene expression analysis of two life cycle stages of the human-infective parasite, Trypanosoma brucei gambiense reveals differentially expressed clusters of co-regulated genes. BMC Genomics 11:124PubMedGoogle Scholar
  110. Walrad P, Paterou A, Acosta-Serrano A, Matthews KR (2009) Differential trypanosome surface coat regulation by a CCCH protein that co-associates with procyclin mRNA cis-elements. PLoS Pathog 5:e1000317PubMedGoogle Scholar
  111. Wang D, Bodovitz S (2010) Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol 28:281–290PubMedGoogle Scholar
  112. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63PubMedGoogle Scholar
  113. Wilhelm BT, Landry JR (2009) RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48:249–257PubMedGoogle Scholar
  114. Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bahler J (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243PubMedGoogle Scholar
  115. Wirtz E, Clayton C (1995) Inducible gene expression in trypanosomes mediated by a prokaryotic repressor. Science 268:1179–1183PubMedGoogle Scholar
  116. Wright JR, Siegel TN, Cross GA (2010) Histone H3 trimethylated at lysine 4 is enriched at probable transcription start sites in Trypanosoma brucei. Mol Biochem Parasitol 172:141–144PubMedGoogle Scholar
  117. Xu M, Fujita D, Hanagata N (2009) Perspectives and challenges of emerging single-molecule DNA sequencing technologies. Small 5:2638–2649PubMedGoogle Scholar
  118. Zhou VW, Goren A, Bernstein BE (2011) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12:7–18PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für ZellbiologieUniversität BernBernSwitzerland

Personalised recommendations