Skip to main content

Time-Dependent Random Variables: Classical Stochastic Processes

  • Chapter
  • First Online:
  • 4408 Accesses

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

f one considers a random variable which depends on time, one is led to the concept of a stochastic process. After the definition of a general stochastic process in Sect. 5.1, we introduce the class of Markov processes. In Sect. 5.2 the master equation is formulated, an equation describing the time evolution of the probability density of a Markov process. In this context, the relevance of the master equation for the description of the dynamics of general open systems will be emphasized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abragam, A., Proctor, W.: Experiments on Spin Temperature, Phys. Rev. 106, 160 (1957)

    Google Scholar 

  • Abragam, A., Proctor, W.: Spin Temperature, Phys. Rev. 109, 1441 (1958)

    Google Scholar 

  • Ahlers, G.: Thermodynamics and experimental tests of static scaling and universality near the superfluid transition in He4 under pressure. Phys. Rev. A 8(1), 530–568 (1973)

    Google Scholar 

  • Anderson, M., Ensher, J., Matthews, M., Wieman, C., Cornell, E.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Google Scholar 

  • Ashcroft, N.W., Mermin, N.: Solid State Physics. Holt–Saunders, Fort Worth (1976)

    Google Scholar 

  • Baccala, L.A., Sameshima, K.: Partial directed coherence: a new concept in neural structure determination. Biol. Cybern. 84, 463–474 (2001)

    Google Scholar 

  • Baehr, H.: Thermodynamik, 9th edn. Springer, Berlin/Heidelberg (1996)

    Google Scholar 

  • Balescu, R.: Equilibrium and Nonequilibrium Statistical Mechanics. Wiley, New York (1975)

    Google Scholar 

  • Barker, J., Henderson, D.: What is a liquid? Understanding the states of matter. Rev. Mod. Phys. 48, 487 (1976)

    Google Scholar 

  • Baxter, R.: Exactly Soluble Models in Statistical Mechanics. Academic, New York (1984)

    Google Scholar 

  • Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York (1978)

    Google Scholar 

  • Berne, B., Pecora, R.: Dynamic Light Scattering. Wiley, New York (1976)

    Google Scholar 

  • Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B 36, 192–236 (1974)

    Google Scholar 

  • Binder, K.: Theory and technical aspects of Monte Carlo simulation. In: Binder, K. (ed.) Monte Carlo Methods in Statistical Physics. Springer, Berlin/Heidelberg (1979)

    Google Scholar 

  • Binder, K.: Applications of the Monte-Carlo Method in Statistical Physics. Springer, Berlin/Heidelberg (1987)

    Google Scholar 

  • Binder, K.: The Monte Carlo Method in Condensed Matter Physics. Springer, Berlin/Heidelberg (1995)

    Google Scholar 

  • Binder, K., Heermann, D.: Monte Carlo Simulation in Statistical Physics. Springer, Berlin/ Heidelberg (1997)

    Google Scholar 

  • Bloomfield, P.: Fourier Analysis of Time Series: An Introduction. Wiley, New York (1976)

    Google Scholar 

  • Brenig, W.: Statistische Theorie der Wärme. Springer, Berlin/Heidelberg (1992)

    Google Scholar 

  • Breuer, H.-P., Petruccione, F.: Stochastic dynamics of quantum jumps. Phys. Rev. E 52(1), 428–441 (1995)

    Google Scholar 

  • Breuer, H., Huber, W., Petruccione, F.: The macroscopic limit in a Stochastic Reaction–Diffusion process. Europhys. Lett. 30(2), 69–74 (1995)

    Google Scholar 

  • Brockwell, P.J., Davies, R.A.: Time Series: Theory and Methods. Springer, New York (1987)

    Google Scholar 

  • Collins, G.: Gaseous BoseEinstein Condensate Finally Observed, Phys. Today 48, 17-20 (1995)

    Google Scholar 

  • Dahlhaus, R.: Graphical interaction models for multivariate time series. Metrika 51, 157–172 (2000)

    Google Scholar 

  • Davis, P., Rabinowitz, P.: Methods of Numerical Integration. Academic, New York (1975)

    Google Scholar 

  • Dawydow, A.S.: Quantum Mechanics. Pergamon Press, Oxford (1965)

    Google Scholar 

  • Delves, L., Mohamed, J.: Computational Methods for Integral Equations. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  • Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM-Algorithm. J. R. Stat. Soc. B 39, 1 (1977)

    Google Scholar 

  • Diu, B., Guthmann, C., Lederer, D., Roulet, B.: Grundlagen der Statistischen Physik. de Gruyter, Berlin (1994)

    Google Scholar 

  • Domb, C., Green, M.: Phase Transitions and Critical Phenomena, vol. 3. Academic, New York (1974)

    Google Scholar 

  • Dudley, R.: Real Analysis and Probability. Wadsworth and Brooks/Cole, Pacific Grove (1989)

    Google Scholar 

  • Efron, B., Tibshirani, R.: An Introduction to Bootstrap. Chapman & Hall, New York (1993)

    Google Scholar 

  • Eichenauer, J., Grothe, H., Lehn, J.: Marsaglia’s lattice test and non-linear congruential pseudo random number generators. Metrika 35, 241 (1988)

    Google Scholar 

  • Eichler, M.: Graphical modeling of dynamic relationships in multivariate time series. In: Schelter, B., Winterhalder, M., Timmer, J. (eds.) Handbook of Time Series Analysis. Wiley, New York (2006)

    Google Scholar 

  • Ellis, R.S.: Entropy, Large Deviations, and Statistcal Mechanics. Springer, Berlin/Heidelberg (1985)

    Google Scholar 

  • Feller, W.: An Introduction to Probability Theory, vol. 2. Wiley, New York (1957)

    Google Scholar 

  • Fitzgerald, W.J., Ó Ruanaidh, J.J.K.: Numerical Bayesian Methods Applied to Signal Processing. Springer, New York/Berlin/Heidelberg (1996)

    Google Scholar 

  • Frodesen, A.G., Skjeggestad, O., Tofte, H.: Probability and Statistics in Particle Physics. Universitätsforlaget, Bergen/Oslo/Tromso (1979)

    Google Scholar 

  • Gardiner, C.: Handbook of Stochastic Methods. Springer, Berlin/Heidelberg (1985)

    Google Scholar 

  • Gelb, A. (ed.): Applied Optimal Estimation. MIT-Press, Cambridge (1974)

    Google Scholar 

  • Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

    Google Scholar 

  • Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison, Reading (1994)

    Google Scholar 

  • Granger, C.J.W.: Investigating causal relations by econometric models and cross-spectral methods. Econometrics 37, 424–438 (1969)

    Google Scholar 

  • Griffin, A., Snoke, D., Stringari, S. (eds.): Bose–Einstein Condensation. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  • Groetsch, C.W.: The Theory of Tikhonovs Regularisation for Fredholm Equations of the First Kind. Pitman, Boston (1984)

    Google Scholar 

  • Hammersley, J.M., Clifford, P.: Markov Field on Finite Graphs and Lattices. unpublished (1971)

    Google Scholar 

  • Hartung, J., Elpelt, B., Klösener, K.: Statistik. Oldenbourg, Munich/Vienna (1986)

    Google Scholar 

  • Heller, P.: Experimental investigations of critical phenomena, Rep. Progr. Phys. 30(II), 731 (1967)

    Google Scholar 

  • Hengartner, W., Theodorescu, R.: Einführung in die Monte-Carlo Methode. Carl Hanser, Munich/ Vienna (1978)

    Google Scholar 

  • Herring, C.: Direct exchange. In: Rado, G., Suhl, H. (eds.) Magnetism, vol. 2B. Academic, New York (1966)

    Google Scholar 

  • Hirschfelder, J., Curtiss, C., Bird, R.: Molecular Theory of Gases and Liquids. Wiley, New York (1954)

    Google Scholar 

  • Ho, J., Litster, J.: Magnetic equation of state of CrBr3 near the critical point. Phys. Rev. Lett. 22(12), 603–606 (1969)

    Google Scholar 

  • Honerkamp, J.: Stochastic Dynamical Systems. VCH, Weinheim (1994)

    Google Scholar 

  • Honerkamp, J., Römer, H.: Theoretical Physics: A Classical Approach. Springer, Berlin/ Heidelberg (1993)

    Google Scholar 

  • Honerkamp, J., Weese, J.: Determination of the Relaxation Spectrum by a Regularization Method. Macromolecules 22, 4372–4377 (1989)

    Google Scholar 

  • Honerkamp, J., Weese, J.: Tikhonovs regularization method for Ill-posed problems: a comparision of different methods. Contin. Mech. Thermodyn. 2, 17–30 (1990)

    Google Scholar 

  • Honerkamp, J., Weese, J.: A nonlinear regularization method for the calculation of the relaxation spectrum. Rheol. Acta 32, 32–65 (1993)

    Google Scholar 

  • Honerkamp, J., Maier, D., Weese, J.: A nonlinear regularization method for the analysis of photon correlation spectroscopy data. J. Chem. Phys. 98(2), 865–872 (1993)

    Google Scholar 

  • Huang, K.: Statistical Mechanics, 2nd edn. Wiley, New York (1987)

    Google Scholar 

  • Ising, E.: Beitrag zur theorie des ferromagnetismus. Z. Phys. 31, 253–258 (1925)

    Google Scholar 

  • Jachan, M., Henschel, K., Nawrath, J., Schad, A., Timmer, J., Schelter, B.: Inferring direct directed-information flow from multivariate nonlinear time series. Phys. Rev. E 80, 011138 (2009)

    Google Scholar 

  • Jaynes, E.: Papers on Probability, Statistics and Statistical Physics. Reidel, Dordrecht (1982)

    Google Scholar 

  • Jiu-li, L., Van den Broeck, C., Nicolis, G.: Stability criteria and fluctuations around nonequilibrium states. Z. Phys. B Condens. Matter 56, 165–170 (1984)

    Google Scholar 

  • Julier, S., Uhlmann, J.: A general method for approximating nonlinear transformations of probability distributions. Technical Report, Department of Engineering Science, University of Oxford (1996)

    Google Scholar 

  • Julier, S.J., Uhlmann, J.K., Durrant-Whyte, H.F.: A new approach for filtering nonlinear systems. In: Proceedings of the American Control Conference, Seattle, vol. 3, pp. 1628–1632 (1995)

    Google Scholar 

  • Julier, S.J., Uhlmann, J.K., Durrant-Whyte, H.F.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control 45, 477–482 (2000)

    Google Scholar 

  • Kadanoff, L.: Scaling Laws for Ising Models Near Tc, Physics 2, 263 (1966)

    Google Scholar 

  • Kitagawa, G., Gersch, W.: Smoothness Priors Analysis of Time Series. Lecture Notes in Statistics, vol. 116. Springer, New York (1996)

    Google Scholar 

  • Kittel, C.: Thermal Physics. Freeman, San Francisco (1980)

    Google Scholar 

  • Klein, M.J.: Phys. Rev. 104, 589 (1956)

    Google Scholar 

  • Klitzing, K.V., Dorda, G., Pepper, M.: New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494–497 (1980)

    Google Scholar 

  • Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin/Heidelberg (1995)

    Google Scholar 

  • Knuth, D.E.: Seminumerical Algorithms, vol. 2: The Art of Computer Programming. Addison, Reading (1969)

    Google Scholar 

  • Kolmogoroff, A. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin/Heidelberg (1933)

    Google Scholar 

  • Kose, V., Melchert, F.: Quantenmaße in der Elektrischen Meßtechnik. VCH, Weinheim (1991)

    Google Scholar 

  • Kouvel, J., Comly, J.: Magnetic equation of state for nickel near its curie point. Phys. Rev. Lett. 20(22), 1237–1239 (1968)

    Google Scholar 

  • Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Google Scholar 

  • Landau, L.D., Lifschitz, E.M.: Theory of Elasticity. Pergamon, London (1959)

    Google Scholar 

  • Lehmann, E.: Theory of Point Estimation. Wadsworth & Brooks/Cole, New York (1991)

    Google Scholar 

  • Lehmer, D.H.: Mathematical methods in large-scale computing units. In: Nr. 141. Proceedings of the 2nd Symposium on Large-Scale Digital Calculating Machinery. Harvard University Press, Cambridge (1951)

    Google Scholar 

  • Levine, R.D., Tribus, M. (eds.): The Maximum Entropy Formalism. MIT Press, Cambridge (1979)

    Google Scholar 

  • Lien, W.H., Phillips, N.E.: Low-temperature heat capacities of potassium, rubidium and cesium. Phys. Rev. A 133(5A), 1370 (1964)

    Google Scholar 

  • Lütkepohl, H., Krätzig, M.: Applied Time Series Econometrics. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  • Malek Mansour, M., Van den Broeck, C., Nicolis, G., Turner, J.: Asymptotic properties of Markovian master equations. Ann. Phys. 131, 283–313 (1981)

    Google Scholar 

  • Mandelbrot, B.: The Fractal Geometry of Nature. Freeman, San Francisco (1982)

    Google Scholar 

  • Mandl, F.: Statistical Physics. Wiley, New York (1971)

    Google Scholar 

  • Mayer, J.E.: The Statistical Mechanics of Condensing Systems. I, J. Chem. Phys. 5, 67 (1937)

    Google Scholar 

  • McCoy, B., Wu, T.: The Two-Dimensional Ising Model. Harvard University Press, Cambridge (1973)

    Google Scholar 

  • McQuarrie, D.A.: Statistical Mechanics. Harper & Row, New York (1976)

    Google Scholar 

  • McQuarrie, D.A.: Quantum Chemistry. Oxford University Press, Oxford (1983)

    Google Scholar 

  • Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Google Scholar 

  • Michels, A., Blaisse, B., Michels, C.: Proc. R. Soc. A 160, 358 (1937)

    Google Scholar 

  • Miller, G.F.: In: Delves, L.M., Walsh, J. (eds.) Numerical Solution of Integral Equations. Clarendon, Oxford (1974)

    Google Scholar 

  • Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.-M.: Wavelet Toolbox, for Use with MatLab. The MathWorks, Natick (1996)

    Google Scholar 

  • Montroll, E.: Some remarks on the integral equations of statistical mechanics In: Cohen, E. (ed.) Fundamental Problems in Statistical Mechanics, p. 230. North-Holland, Amsterdam (1962)

    Google Scholar 

  • Montroll, E., West, B.: On an enriched collection of Stochastic processes. In: Montroll, E., Lebowitz, J. (eds.) Fluctuation Phenomena, Chap. 2, p. 62–206. North-Holland, Amsterdam (1987)

    Google Scholar 

  • Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer, New York (1984)

    Google Scholar 

  • Nicolis, G., Prigogine, I.: Self-Organization in Non-equilibrium Systems. Wiley, New York (1977)

    Google Scholar 

  • Niederreiter, H.: Recent trends in random number and random vector generation. Ann. Oper. Res., Proc. 5th Int. Conf. Stoch. Programm. Ann. Arbor. 35, 241 (1989)

    Google Scholar 

  • Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., Hallett, M.: Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 115, 2292–2307 (2004)

    Google Scholar 

  • Oppenheimer, A., Schafer, R.: Discrete-Time Signal Processing. Prentice-Hall, Englewood Cliffs (1989)

    Google Scholar 

  • Papoulis, A.: Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York (1984)

    Google Scholar 

  • Penzias, A.A.,Wilson, R.: A Measurement of Excess Antenna Temperature at 4080 mc/s., Astrophys. J. 142, 419-421 (1965)

    Google Scholar 

  • Prange, R., Girvin, S. (eds.): The Quantum Hall Effect. Springer, Berlin/Heidelberg (1987)

    Google Scholar 

  • Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  • Priestley, M.: Spectral Analysis and Time Series. Academic, New York (1981)

    Google Scholar 

  • Prigogine, I., Resibois, P.: On the kinetics of the approach to equilibrium, Physica 27(629) (1961)

    Google Scholar 

  • Purcell, E., Pound, R.: A Nuclear Spin System at Negative Temperature,, Phys. Rev. 81, 279 (1951)

    Google Scholar 

  • Rabiner, L., Gold, B.: Theory and Application of Digital Signal Processing. Prentice-Hall, Englewood Cliffs (1975)

    Google Scholar 

  • Rahman, A: Correlations in the Motion of Atoms in Liquid Argon,.: Phys. Rev. A 136, A405 (1964)

    Google Scholar 

  • Ramsey, N.: Thermodynamics and Statistical Mechanics at Negative Absolute Temperatures, Phys. Rev. 103, 20 (1956)

    Google Scholar 

  • Ree, F.H., Hoover, W.G.: Fifth and Sixth Virial Coefficients for Hard Spheres and Hard Disks, J. Chem. Phys. 40, 939 (1964)

    Google Scholar 

  • Reichl, L.E.: A Modern Course in Statistical Physics. Arnold, London (1980)

    Google Scholar 

  • Römer, H., Filk, T.: Statistische Mechanik. VCH, Weinheim (1994)

    Google Scholar 

  • Roths, T., Maier, D., Friedrich, C., Marth, M., Honerkamp, J.: Determination of the relaxation time spectrum from dynamic moduli using an edge preserving regularization method. Rheol. Acta 39, 163–173 (2000)

    Google Scholar 

  • Rubinstein, R.Y.: Simulation and the Monte-Carlo Method. Wiley, New York (1981)

    Google Scholar 

  • Samorodnitzky, G., Taqqu, M.: Stable Non-Gaussian Random Processes. Chapman & Hall, New York/London (1994)

    Google Scholar 

  • Saupe, D.: Algorithms for random fractals. In: Peitgen, H., Saupe, D. (eds.) The Science of Fractal Images. Springer, Berlin/Heidelberg (1988)

    Google Scholar 

  • Schelter, B., Winterhalder, M., Eichler, M., Peifer, M., Hellwig, B., Guschlbauer, B., Lücking, C.H., Dahlhaus, R., Timmer, J.: Testing for directed influences among neural signals using partial directed coherence. J. Neurosci. Method 152, 210–219 (2006a)

    Google Scholar 

  • Schelter, B., Winterhalder, M., Timmer, J. (eds.): Handbook of Time Series Analysis. Wiley-VCH, Berlin (2006b)

    Google Scholar 

  • Schlittgen, R., Streitberg, H.: Zeitreihenanalyse. R. Oldenbourg, Munich (1987)

    Google Scholar 

  • Schneider, I. (ed.): Die Entwicklung der Wahrscheinlichkeitsrechnung von den Anfängen bis 1933. Wissenschaftliche Buchgesellschaft, Darmstadt (1986)

    Google Scholar 

  • Shannon, C.: A Mathematical Theory of Communication. Bell Syst. Technol. J. 27, 379–423 (1948)

    Google Scholar 

  • Shwartz, A., Weiss, A.: Large Deviations for Performance Analysis. Chapman & Hall, New York/London (1995)

    Google Scholar 

  • Sommerlade, L., Thiel, M., Platt, B., Plano, A., Riedel, G., Grebogi, C., Timmer, J., Schelter, B. Inference of Granger causal time-dependent influences in noisy multivariate time series. J. Neurosci. Method 203, 173–185 (2012)

    Google Scholar 

  • Stanley, H.E.: Phase Transition and Critical Phenomena. Clarendon Press, Oxford (1971)

    Google Scholar 

  • Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley (1996)

    Google Scholar 

  • Straumann, N.: Thermodynamik. Springer, Berlin/Heidelberg (1986)

    Google Scholar 

  • Stroud, A.: Approximate Calculation of Multiple Integrals. Prentice Hall, Englewood Cliffs (1971)

    Google Scholar 

  • Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Wiley, New York (1977)

    Google Scholar 

  • Ursell, H.D.: The evaluation of Gibb’s phase-integral for imperfect gases, Proc. Cambridge Phil. Soc. 23, 685 (1927)

    Google Scholar 

  • Verlet, L.: Computer “Experiments” on Classical Fluids. II. Equilibrium Correlation Functions, Phys. Rev. 165, 201 (1968)

    Google Scholar 

  • van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1985)

    Google Scholar 

  • von Randow, G.: Das Ziegenproblem. Rowohlt, Reinbek (1992)

    Google Scholar 

  • Voss, H., Timmer, J., Kurths, J.: Nonlinear dynamical system identification from uncertain and indirect measurements. Int. J. Bifurc. Chaos 6, 1905–1933 (2004).

    Google Scholar 

  • Wan, E.A., Nelson, A.T.: Neural dual extended Kalman filtering: applications in speechenhancement and monaural blind signal separation. In: IEEE Proceedings in Neural Networks for Signal Processing, Munich, pp. 466–475.

    Google Scholar 

  • Wegner, F.: Corrections to Scaling Laws, Phys. Rev. B 5, 4529 (1972)

    Google Scholar 

  • Wilson, K.G.: Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture, Phys. Rev. B 4, 31743184 (1971)

    Google Scholar 

  • Wilson, K.G., Kogut, J.: The renormalization group and the ε expansion. Phys. Rep. 12 C, 75–200 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Honerkamp, J. (2012). Time-Dependent Random Variables: Classical Stochastic Processes. In: Statistical Physics. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28684-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28684-1_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28683-4

  • Online ISBN: 978-3-642-28684-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics