Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 411))

Abstract

A notion of visual information is introduced as the complexity not of the raw images, but of the images after the effects of nuisance factors such as viewpoint and illumination are discounted. It is rooted in ideas of J. J. Gibson, and stands in contrast to traditional information as entropy or coding length of the data regardless of its use, and regardless of the nuisance factors affecting it. The non-invertibility of nuisances such as occlusion and quantization induces an “information gap” that can only be bridged by controlling the data acquisition process. Measuring visual information entails early vision operations, tailored to the structure of the nuisances so as to be “lossless” with respect to visual decision and control tasks (as opposed to data transmission and storage tasks implicit in communications theory). The definition of visual information suggests desirable properties that a visual representation should possess to best accomplish vision-based decision and control tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloimonos, J., Weiss, I., Bandyopadhyay, A.: Active vision. International Journal of Computer Vision 1(4), 333–356 (1988)

    Article  Google Scholar 

  2. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations of image processing. Arch. Rational Mechanics 123 (1993)

    Google Scholar 

  3. Arbel, T., Ferrie, F.P.: Informative views and sequential recognition. In: Conference on Computer Vision and Pattern Recognition (1995)

    Google Scholar 

  4. Arrow, K.J.: Information and economic behavior. In: Federation of Swedish Industries Stockholm, Sweden (1973)

    Google Scholar 

  5. Ayvaci, A., Raptis, M., Soatto, S.: Optical flow and occlusion detection with convex optimization. In: Proc. of Neuro Information Processing Systems (NIPS) (December 2010)

    Google Scholar 

  6. Ayvaci, A., Soatto, S.: Efficient model selection for detachable object detection. UCLA Technical Report, March 23 (2011), (submitted)

    Google Scholar 

  7. Ayvaci, A., Soatto, S.: Detachable object detection. Technical Report UCLA-CSD-100036 (November 19 February 22, 2011) (2010) (submitted)

    Google Scholar 

  8. Bajcsy, R.: Active perception. Proceedings of the IEEE 76(8), 966–1005 (1988)

    Article  Google Scholar 

  9. Bajcsy, R., Maver, J.: Occlusions as a guide for planning the next view. IEEE Trans. Pattern Anal. Mach. Intell. 15(5) (May 1993)

    Google Scholar 

  10. Batalin, M.A., Sukhatme, G.S.: Efficient exploration without localization. In: Proceedings of IEEE International Conference on Robotics and Automation, 2003. ICRA 2003, vol. 2 (2003)

    Google Scholar 

  11. Bernardo, J.M.: Expected information as expected utility. Annals of Stat. 7(3), 686–690 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Blake, A., Yuille, A.: Active vision. MIT Press Cambridge (1993)

    Google Scholar 

  13. Bourgault, F., Makarenko, A.A., Williams, S., Grocholsky, B., Durrant-Whyte, H.: Information based adaptive robotic exploration. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), vol. 1 (2002)

    Google Scholar 

  14. Brooks, R.: Visual map making for a mobile robot. In: Proceedings of 1985 IEEE International Conference on Robotics and Automation, vol. 2 (1985)

    Google Scholar 

  15. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2005, vol. 2 (2005)

    Google Scholar 

  16. Burns, J.B., Weiss, R.S., Riseman, E.M.: The non-existence of general-case view-invariants. In: Geometric Invariance in Computer Vision (1992)

    Google Scholar 

  17. Butler, R.B.: The effect of deprivation of visual incentives on visual exploration motivation in monkeys. Journal of Comparative and Physiological Psychology 50(2), 177 (1957)

    Article  Google Scholar 

  18. Candès, E.J., Donoho, D.L.: Curvelets, multiresolution representation, and scaling laws. In: Wavelet Applications in Signal and Image Processing (2000)

    Google Scholar 

  19. Caselles, V., Coll, B., Morel, J.-M.: Topographic maps and local contrast changes in natural images. Int. J. Comput. Vision 33(1), 5–27 (1999)

    Article  MathSciNet  Google Scholar 

  20. Castro, R., Kalish, C., Nowak, R., Qian, R., Rogers, T., Zhu, X.: Human active learning. In: Proc. of NIPS (2008)

    Google Scholar 

  21. Chen, H.F., Belhumeur, P.N., Jacobs, D.W.: In search of illumination invariants. In: Proc. IEEE Conf. on Comp. Vision and Pattern Recogn. (2000)

    Google Scholar 

  22. Claxton, K., Neumann, P.J., Araki, S., Weinstein, M.C.: Bayesian value-of-information analysis. International Journal of Technology Assessment in Health Care 17(01), 38–55 (2001)

    Article  Google Scholar 

  23. Cremers, D., Soatto, S.: Motion competition: a variational approach to piecewise parametric motion segmentation. Intl. J. of Comp. Vision, 249–265 (May 2005)

    Google Scholar 

  24. Da Cunha, A.L., Do, M.N., Vetterli, M.: On the information rates of the plenoptic function. In: ICIP, Atlanta, GA (2006)

    Google Scholar 

  25. Davison, A.J., Murray, D.W.: Simultaneous localization and map-building using active vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 865–880 (2002)

    Article  Google Scholar 

  26. Denzler, J., Brown, C.M.: Information theoretic sensor data selection for active object recognition and state estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(2), 145–157 (2002)

    Article  Google Scholar 

  27. Fogel, E., Huang, Y.F.: Value of Information in System Identification-Bounded Noise Case. Automatica 18(2), 229–238 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Franz, M.O., Schölkopf, B., Mallot, H.A., Bülthoff, H.H.: Learning view graphs for robot navigation. Autonomous Robots 5(1), 111–125 (1998)

    Article  Google Scholar 

  29. Gibson, J.J.: The theory of information pickup. In: Contemp. Theory and Research in Visual Perception, p. 662 (1968)

    Google Scholar 

  30. Gibson, J.J.: The myths of passive perception. Philosophy and Phenomenological Research 37(2), 234–238 (1976)

    Article  Google Scholar 

  31. Gibson, J.J.: The ecological approach to visual perception. LEA (1984)

    Google Scholar 

  32. Golubitsky, M., Guillemin, V.: Stable mappings and their singularities. Graduate texts in mathematics, vol. 14 (1974)

    Google Scholar 

  33. Good, I.J., Osteyee, D.B.: Information, weight of evidence. The singularity between probability measures and signal detection. Springer, Heidelberg (1974)

    MATH  Google Scholar 

  34. Gould, J.P.: Risk, stochastic preference, and the value of information. Journal of Economic Theory 8(1), 64–84 (1974)

    Article  MathSciNet  Google Scholar 

  35. Guo, C., Zhu, S., Wu, Y.N.: Toward a mathematical theory of primal sketch and sketchability. In: Proc. 9th Int. Conf. on Computer Vision (2003)

    Google Scholar 

  36. Huang, J., Mumford, D.: Statistics of natural images and models. In: Proc. CVPR, pp. 541–547 (1999)

    Google Scholar 

  37. Hughes, S.B., Lewis, M.: Task-driven camera operations for robotic exploration. IEEE Transactions on Systems, Man and Cybernetics, Part A 35(4), 513–522 (2005)

    Article  Google Scholar 

  38. Itti, L., Koch, C.: Computational modelling of visual attention. Nature Rev. Neuroscience 2(3), 194–203 (2001)

    Article  Google Scholar 

  39. James, K.: On some possible characteristics of information in J. J. Gibson’s ecological approach to visual perception. Leonardo 13(2) (1980)

    Google Scholar 

  40. Jin, H., Soatto, S., Yezzi, A.: Multi-view stereo reconstruction of dense shape and complex appearance. Intl. J. of Comp. Vis. 63(3), 175–189 (2005)

    Article  Google Scholar 

  41. Jojic, N., Frey, B., Kannan, A.: Epitomic analysis of apperance and shape. In: Proc. ICCV (2003)

    Google Scholar 

  42. Jones, E., Soatto, S.: Visual-inertial navigation, localization and mapping: A scalable real-time large-scale approach. Intl. J. of Robotics Research (January 17, 2011)

    Google Scholar 

  43. Jones, S.D., Andersen, C., Crowley, J.L.: Appearance based processes for visual navigation. In: Processings of the 5th International Symposium on Intelligent Robotic Systems (SIRS 1997), pp. 551–557 (1997)

    Google Scholar 

  44. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, Heidelberg (1988)

    Book  MATH  Google Scholar 

  45. Keeler, K.C.: Map representation and optimal encoding for image segmentation. PhD dissertation. Harvard University (October 1990)

    Google Scholar 

  46. Kunita, H.: Stochastic differential equations on manifolds. Cambridge University Press (1991)

    Google Scholar 

  47. Kutulakos, K.N., Dyer, C.R.: Global surface reconstruction by purposive control of observer motion. Artificial Intelligence 78(1-2), 147–177 (1995)

    Article  Google Scholar 

  48. Kutulakos, K.N., Jagersand, M.: Exploring objects by invariant-based tangential viewpoint control. In: Proceedings of International Symposium on Computer Vision, pp. 503–508 (1995)

    Google Scholar 

  49. Lee, T., Soatto, S.: Learning and matching multiscale template descriptors for real-time detection, localization and tracking. In: Proc. IEEE Conf. on Comp. Vision and Pattern Recogn., pp. 1457–1464 (2011)

    Google Scholar 

  50. Lindeberg, T.: Edge Detection and Ridge Detection with Automatic Scale Selection, vol. 30. Cambridge University Press (1998)

    Google Scholar 

  51. Lindeberg, T.: Principles for automatic scale selection. Technical report, KTH, Stockholm, CVAP (1998)

    Google Scholar 

  52. Lindley, D.V.: On a measure of the information provided by an experiment. Annals of Math. Stat. 27(4), 986–1005 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  53. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.: An invitation to 3D vision, from images to geometric models. Springer, Heidelberg (2003)

    Google Scholar 

  54. Marr, D.: Vision. W.H.Freeman & Co. (1982)

    Google Scholar 

  55. Marschak, J.: Remarks on the economics of information. Contributions to Scientific Research in Management (1960)

    Google Scholar 

  56. Mikolajczyk, K., Schmid, C.: An Affine Invariant Interest Point Detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  57. Mumford, D., Gidas, B.: Stochastic models for generic images. Quarterly of Applied Mathematics 54(1), 85–111 (2001)

    Article  MathSciNet  Google Scholar 

  58. Newman, P., Ho, K.: SLAM-loop closing with visually salient features. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. ICRA 2005, pp. 635–642 (2005)

    Google Scholar 

  59. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: A strategy employed by V1? In: Vision Research (1998)

    Google Scholar 

  60. Peruch, P., Vercher, J.-L., Gauthier, G.M.: Acquisition of spatial knowledge through visual exploration of simulated environments. Ecological Psychology 7(1), 1–20 (1995)

    Article  Google Scholar 

  61. Pito, R., Co, I.T., Boston, M.A.: A solution to the next best view problem for automated surface acquisition. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(10), 1016–1030 (1999)

    Article  Google Scholar 

  62. Pretto, A., Chiuso, A., Soatto, S.: Sufficient exploration for navigation and recognition. UCLA Technical Report (January 17, 2011) (submitted)

    Google Scholar 

  63. Robert, C.P.: The Bayesian Choice. Springer, New York (2001)

    MATH  Google Scholar 

  64. Se, S., Lowe, D., Little, J.: Vision-based mobile robot localization and mapping using scale-invariant features. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA (2001)

    Google Scholar 

  65. Shao, J.: Mathematical Statistics. Springer, Heidelberg (1998)

    Google Scholar 

  66. Sim, R., Dudek, G.: Effective exploration strategies for the construction of visual maps. In: Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 4 (2003)

    Google Scholar 

  67. Soatto, S.: Actionable information in vision. In: Proc. of the Intl. Conf. on Comp. Vision (October 2009)

    Google Scholar 

  68. Soatto, S.: Steps Toward a Theory of Visual Information. Technical Report UCLA-CSD100028 (September 13, 2010)

    Google Scholar 

  69. Soatto, S.: Texture, structure and visual matching. Technical Report UCLA-CSD-100033 (October 11, 2010)

    Google Scholar 

  70. Soatto, S., Chiuso, A.: Controlled recognition bounds for scaling and occlusion channels. In: Proc. of the Data Compression Conference (March 2011)

    Google Scholar 

  71. Stachniss, C., Grisetti, G., Burgard, W.: Information gain-based exploration using rao-blackwellized particle filters. In: Proc. of RSS (2005)

    Google Scholar 

  72. Sundaramoorthi, G., Petersen, P., Soatto, S.: On the set of images modulo viewpoint and contrast changes. Technical Report UCLA-CSD090005 (2009) (submitted)

    Google Scholar 

  73. Taylor, C.J., Kriegman, D.J.: Vision-based motion planning and exploration algorithms for mobile robots. IEEE Trans. on Robotics and Automation 14(3), 417–426 (1998)

    Article  Google Scholar 

  74. Thrun, S.: Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence 99(1), 21–71 (1998)

    Article  MATH  Google Scholar 

  75. Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. In: Proc. of the Allerton Conf. (2000)

    Google Scholar 

  76. Todorovic, S., Ahuja, N.: Extracting subimages of an unknown category from a set of images. In: Proc. IEEE Conf. on Comp. Vis. and Patt. Recog. (2006)

    Google Scholar 

  77. Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. of the Royal Society of London, ser. B (1952)

    Google Scholar 

  78. Vedaldi, A., Soatto, S.: Features for recognition: viewpoint invariance for non-planar scenes. In: Proc. of the Intl. Conf. of Comp. Vision, pp. 1474–1481 (October 2005)

    Google Scholar 

  79. Vedaldi, A., Soatto, S.: Quick Shift and Kernel Methods for Mode Seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  80. Wertheimer, M.: Laws of organization in perceptual forms. In: Ellis, W.D. (ed.) A Sourcebook of Gestalt Psychology, pp. 331–363. Harcourt, Brace and Company (1939)

    Google Scholar 

  81. Whaite, P., Ferrie, F.P.: From uncertainty to visual exploration. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(10), 1038–1049 (1991)

    Article  Google Scholar 

  82. Wiener, N.: Cybernetics, or Control and Communication in Men and Machines. MIT Press (1949)

    Google Scholar 

  83. Wu, Y.N., Guo, C., Zhu, S.C.: From information scaling of natural images to regimes of statistical models. Quarterly of Applied Mathematics 66, 81–122 (2008)

    MathSciNet  MATH  Google Scholar 

  84. Zhang, H., Ostrowski, J.P.: Visual motion planning for mobile robots. IEEE Transactions on Robotics and Automation 18(2), 199–208 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Soatto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Soatto, S. (2013). Actionable Information in Vision. In: Cipolla, R., Battiato, S., Farinella, G. (eds) Machine Learning for Computer Vision. Studies in Computational Intelligence, vol 411. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28661-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28661-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28660-5

  • Online ISBN: 978-3-642-28661-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics