Skip to main content

Lattice Transformations in 2D Crystals

  • Chapter
  • First Online:
First Principles Modelling of Shape Memory Alloys

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 163))

  • 1953 Accesses

Abstract

In the following chapter we shall gradually extend the geometrical size of the model assemblies in order to allow for microstructure evolutions during both thermal and mechanical induced phase transformation processes. We shall explain how larger test assemblies consisting of up to a quarter million atoms shall produce martensitic domain structures and how these structures evolve during transformation/reverse transformation cycles simulated with these assemblies. The conceptual restriction of two spatial dimensions reallocates the computational resources in favour of the time periods available for the simulations. This geometrical restriction also reduces the model’s sensitivity in regard to surface effects such that free surface conditions may be applied. Accordingly, the simulation algorithm may be kept comparatively lean and transparent since the additional and cumbersome algorithms needed to artificially exclude the surface—and to maintain the mandatory stress control involved—are redundant [17].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Kastner, G. Eggeler, W. Weiss, G.J. Ackland, Molecular dynamics simulation study of microstructure evolution during cyclic martensitic transformations. JMPS 9, 1888–1908 (2011)

    Google Scholar 

  2. O. Kastner, G.J. Ackland, Mesoscale kinetics produces martensitic microstructure. J. Mech. Phys. Solids 57(1), 109–121 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. O. Kastner, G.J. Ackland, Load-induced martensitic transformations in pseudo-elastic Lennard-Jones cyrstals. in Proceedings of the SMASIS 2008, ASME, Ellicott City, 28–30 Oct 2008

    Google Scholar 

  4. O. Kastner, G.J. Ackland, Martensitic transformations in 2D Lennard-Jones crystals. in Proceedings of ICOMAT 2008, International Conference on Martensitic Transformations, Santa Fe, June 29–July 5 2008

    Google Scholar 

  5. O. Kastner, G.J. Ackland, Atomistic Simulations of martensitic transformations in Lennard-Jones solids. Part I. in Science and Supercomputing in Europe, HPC-Europa, 2007, pp. 950–959

    Google Scholar 

  6. O. Kastner, G.J. Ackland, Atomistic simulations of martensitic transformations in Lennard-Jones solids. Part II. In Science and Supercomputing in Europe, HPC-Europa, 2007, pp. 960–962

    Google Scholar 

  7. O. Kastner, G.J. Ackland, G. Eggeler, W. Weiss, Preprint Series Weierstrass Institut for Applied Analysis and Stochastics, 2010. Preprint 1497

    Google Scholar 

  8. P.L. Potapov, P. Ochin, J. Pons, D. Schryvers, Nanoscale inhomogeneities in melt-spun Ni–Al. Acta Mater. 48, 3833–3845 (2000)

    Article  Google Scholar 

  9. O. Kastner, R. Shneck, Fundamental investigation of the nucleation of martensite in a lennard-jones crystal. unpublished, 2012

    Google Scholar 

  10. K. Gröhenig. Foundations of time-frequency analysis. Birkhäuser, Boston Mass. (etc.), 2001

    Google Scholar 

  11. P.S. Landa, Regular and Chaotic Oscillations: Foundations of Engineering Mechanics (Springer, Heidelberg, 2001)

    MATH  Google Scholar 

  12. W. Dreyer, M. Herrmann, Numerical experiments on the modulation theory for the nonlinear atomic chain. Physica D 237(2), 255–282 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. W. Dreyer, M. Herrmann, A. Mielke, Micro–macro transition in the atomic chain via Whitham’s modulation equation. Nonlinearity 19(2), 471–500 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. W. Dreyer, M. Herrmann, M. Kunik, Kinetic solutions of the Boltzmann–Peierls equation and its moment systems. Continuum Mech. Therm. 16(5), 453–469 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. K. Bahattacharya, S. Conti, G. Zanzotto, J. Zimmer, Crystal symmetry and the reversibility of martensitic transformations. Nat. Mater. 428, 55–59 (2004)

    Article  Google Scholar 

  16. A. Condo, C. Somsen, J. Olbricht, G. Eggeler, A. Dlouhy, R-phase stabilization in ultra-fine grain NiTi wires after mechanical cycling. in ESOMAT 2009—8th European Symposium on Martensitic Transformations, Prague, 07–11 Sept 2009, ed. by P. Sittner, V. Paidar, L. Heller, H. Seiner

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kastner, O. (2012). Lattice Transformations in 2D Crystals. In: First Principles Modelling of Shape Memory Alloys. Springer Series in Materials Science, vol 163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28619-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28619-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28618-6

  • Online ISBN: 978-3-642-28619-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics