Skip to main content

Maxwell Equations and Landau–Lifshitz Equations

  • Chapter
  • First Online:
Micromagnetics and Recording Materials

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

This chapter will present the theoretical, mathematical and computational fundamentals for micromagnetics. The target of micromagnetics is to clarify the motion of magnetic moments in ferromagnetic materials and devices, which is described by the nonlinear Landau–Lifshitz equations, or the equivalent Landau–Lifshitz–Gilbert (LLG) equations. In the LLG equations, the time derivative of the magnet moment in a micromagnetic cell is controlled by the local effective magnetic field. The effective magnetic field contains the terms determined by the fundamental and applied magnetism in a magnetic material, including the external field, the crystalline anisotropy field, the exchange field, the demagnetizing field, and the magneto-elastic field. Among these field terms, the most time-consuming one in computation is the demagnetizing field, which will be calculated by the Green’s function method following the Maxwell’s equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Landau, L.D., Lifshitz, E.: Electrodynamics of Continuous Media, translated from Russian by Sykes J.B. and Bell J.S. Pergamon Press, Oxford (1960)

    Google Scholar 

  2. Brown, W.F., Jr., La Bonte, A.E.: Structure and energy of one-dimensional domain walls in ferromagnetic thin films. J. Appl. Phys. 36(4), 1380–1386 (1965)

    Google Scholar 

  3. Maxwell J.C.: A Treatise on Electricity and Magnetism (1873), translated by Ge G. into Chinese. Wuhan Press, Wuhan (1994)

    Google Scholar 

  4. von Laue M.: Geschichte der Physik (1950), translated by Fan D.N. and Dai N.Z. into Chinese. Commercial Press, Beijing (1978)

    Google Scholar 

  5. Wei, D., Wang, S.M., Ding, Z.J., Gao, K.Z.: Micromagnetics of ferromagnetic nano-devices using fast Fourier transform method. IEEE Trans. Magn. 45(8), 3035–3045 (2009)

    Article  CAS  Google Scholar 

  6. Schabes, M.E., Aharoni, A.: Magnetostatic interaction fields for a three-dimensional array of ferromagnetic cubes. IEEE Trans. Magn. 23(6), 3882–3888 (1987)

    Article  Google Scholar 

  7. Wei, D.: Fundamentals of Electric, Magnetic, Optic Materials and Devices (in chinese), 2nd edn. Science Press, Beijing (2009)

    Google Scholar 

  8. Landau, L.D., Lifshitz, E.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Zeitsch. der Sow. 8, 153 (1935), reprinted in English by Ukr. J. Phys. 53, 14 (2008)

    Google Scholar 

  9. Akulov, N.S.: Zur atomtheorie des ferromagnetismus. Z. Phys. 54, 582–587 (1929)

    Article  CAS  Google Scholar 

  10. Becker, R.: Zur theorie der magnetisierungskurve. Z. Phys. 62, 253–269 (1930)

    Article  CAS  Google Scholar 

  11. Bloch, F.: Zur theorie des Austauschproblems und der Remanenzerscheinung der ferromagnetika. Z. Phys. 74, 295–335 (1932)

    Article  CAS  Google Scholar 

  12. Gilbert, T.L.: A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40(6), 3443–3449 (2004)

    Article  CAS  Google Scholar 

  13. Brown, W.F., Jr.: Micromagnetics. Wiley, New York (1963)

    Google Scholar 

  14. Kaya, S.: On the magnetization of single crystals of nickel, vol. 17, p. 1157. Science Report, Tohoku University (1928)

    Google Scholar 

  15. Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans. Magn. 27(4), 3475–3518 (1991)

    Article  CAS  Google Scholar 

  16. Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. A 240, 599 (1948)

    Article  Google Scholar 

  17. Hughes, G.F.: Magnetization reversal in cobalt-phosphorus films. J. Appl. Phys. 54, 5306–5313 (1983)

    Article  CAS  Google Scholar 

  18. Victora, R.H.: Micromagnetic predictions for magnetization reversal in CoNi films. J. Appl. Phys. 62, 4220–4225 (1987)

    Article  CAS  Google Scholar 

  19. Bertram, H.N., Zhu, J.G.: Micromagnetic studies of thin metallic films. J. Appl. Phys. 63, 3248–3253 (1988)

    Article  Google Scholar 

  20. NIST: Object Oriented MicroMagnetic Framework (OOMMF) Project. NIST Center for Information Technology Laboratory. http://www.math.nist.gov/oommf/ (2006). Accessed 20 June 2011

  21. Fredkin, D.R., Koehler, T.R.: Numerical micromagnetics by the finite element method. IEEE Trans. Magn. 23(5), 3385–3387 (1987)

    Article  Google Scholar 

  22. Fidler, J., Schrefl, T.: Micromagnetic modelling—the current state of the art. J. Phys. D Appl. Phys. 33, R135–R156 (2000)

    Article  CAS  Google Scholar 

  23. Scholz, W., Fidler, J., Schrefl, T., Suess, D., Dittrich, R., Forster, H., Tsiantos, V.: Scalable parallel micromagnetic solvers for magnetic nanostructures. Comput. Mater. Sci. 28, 366–383 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Wei .

Appendix

Appendix

Appendix A

If a \(a^{\prime }\times b^{\prime }\) rectangle locates at \(z^{\prime }=0\), and the observation position vector is located at \({\mathbf{ r} }=(x,y,z)=(r_1,r_2,r_3)\), as seen in Fig. 2.4a, the three nonzero elements \(N^{\mathrm{tri}}_{13},\;N^{\mathrm{tri}}_{23}\; {\text {and}}\; N^{\mathrm{tri}}_{33}\) in the demagnetizing matrix of a rectangular surface are (\(\alpha =1,3\)):

$$\begin{aligned} N^\mathrm{ rec} _{\alpha 3} ({\mathbf{ r} })= -{\frac{1}{{4\pi }}} \int \limits ^{a^{\prime }/2}_{-a^{\prime }/2} \mathrm{ d} r^{\prime }_1 \int \limits ^{b^{\prime }/2}_{-b^{\prime }/2} \mathrm{ d} r^{\prime }_2 {\frac{{r_\alpha -r^{\prime }_\alpha }}{{\ \left[(r_1-r^{\prime }_1)^2+(r_2-r^{\prime }_2)^2+r^2_3\right]^{3/2}\ }}} \end{aligned}$$
(2.79)

We just have to do two integrations for \(N^\mathrm{ rec} _{33}\) and \(N^\mathrm{ rec} _{13}\), and the integration of \(N^\mathrm{ rec} _{23}\) is totally analogy to \(N^\mathrm{ rec} _{13}\). Let’s start with \(N^\mathrm{ rec} _{13}\):

$$\begin{aligned} N^\mathrm{ rec} _{13}&= -{\frac{1}{{4\pi }}} \int \limits ^{a^{\prime }/2}_{-a^{\prime }/2} \mathrm{ d} x^{\prime } \int \limits ^{b^{\prime }/2}_{-b^{\prime }/2} \mathrm{ d} y^{\prime } {\frac{{x-x^{\prime }}}{{\ \left[(x-x^{\prime })^2+(y-y^{\prime })^2+z^2\right]^{3/2}\ }}} \nonumber \\&= -{\frac{1}{{4\pi }}} \int \limits ^{b^{\prime }/2}_{-b^{\prime }/2} \mathrm{ d} y^{\prime } \left.{\frac{1}{{\ \left[(x-x^{\prime })^2+(y-y^{\prime })^2+z^2\right]^{1/2}\ }}} \right|^{a^{\prime }/2}_{x^{\prime }=-a^{\prime }/2} \nonumber \\&= -{\frac{1}{{4\pi }}}\sum _q (-q) \ln \left(y^{\prime }-y+ \sqrt{R^2_1+(y-y^{\prime })^2+R^2_3}\right)^{b^{\prime }/2}_{y^{\prime }=-b^{\prime }/2} \nonumber \\&= -{\frac{1}{{4\pi }}}\sum _q \sum _w qw \ln \left(R-wR_2\right) \end{aligned}$$
(2.80)

The variables are defined in Table 2.2. The integration for \(N^\mathrm{ rec} _{33}\) can also be done:

$$\begin{aligned} N^\mathrm{ rec} _{33}&= -{\frac{1}{{4\pi }}} \int \limits ^{a^{\prime }/2}_{-a^{\prime }/2} \mathrm{ d} x^{\prime } \int \limits ^{b^{\prime }/2}_{-b^{\prime }/2} \mathrm{ d} y^{\prime } {\frac{{z}}{{\big [(x-x^{\prime })^2+(y-y^{\prime })^2+z^2\big ]^{3/2}\ }}} \nonumber \\&= -{\frac{1}{{4\pi }}} \int \limits ^{b^{\prime }/2}_{-b^{\prime }/2} \mathrm{ d} y^{\prime } {\frac{{z}}{{\big [(y-y^{\prime })^2+z^2\big ]\ }}} \left.{\frac{{x^{\prime }-x}}{{\big [(x-x^{\prime })^2+(y-y^{\prime })^2+z^2\big ]^{1/2}\ }}} \right|^{a^{\prime }/2}_{x^{\prime }=-a^{\prime }/2} \nonumber \\&= -{\frac{1}{{4\pi }}}\sum _q \left. \arctan \left( \frac{R_1}{R_3} \frac{y^{\prime }-y}{\sqrt{R^2_1+(y-y^{\prime })^2+R^2_3}} \right) \right|^{b^{\prime }/2}_{y^{\prime }=-b^{\prime }/2} \nonumber \\&= -{\frac{1}{{4\pi }}}\sum _q \sum _w \arctan \,\frac{R_1R_2}{R_3R} \end{aligned}$$
(2.81)

The \(N^\mathrm{ rec} _{\alpha 3} ({\mathbf{ r} })\) of a rectangular surface have be listed in Table 2.2 respectively.

Appendix A

If the surface located at \(z^{\prime }=0\) is a right-angle triangle with right-angle side lengths \((a^{\prime },b^{\prime })\), the origin at the midpoint of the hypotenuse, and the hypotenuse defined by equation \(y^{\prime }=-sx^{\prime }\) or \(x^{\prime }=-vy^{\prime }\), and the observation position vector is located at \({\mathbf{ r} }=(x,y,z)\), there are still three nonzero elements in the demagnetizing matrix of a triangular surface, as seen in Fig. 2.4b. Here we can first do the integral for element \(N^\mathrm{ tri} _{13}\):

$$\begin{aligned} N^\mathrm{ tri} _{13}=&\; -{\frac{1}{{4\pi }}} \int \limits ^{b^{\prime }/2}_{-b^{\prime }/2} \mathrm{ d} y^{\prime } \int \limits ^{a^{\prime }/2}_{-vy^{\prime }} \mathrm{ d} x^{\prime } {\frac{{x-x^{\prime }}}{{\ \left[(x-x^{\prime })^2+(y-y^{\prime })^2+z^2\right]^{3/2}\ }}} \nonumber \\=&\; -{\frac{1}{{4\pi }}} \int \limits ^{b^{\prime }/2}_{-b^{\prime }/2} \mathrm{ d} y^{\prime } \left\{ \frac{1}{\ \left[(a^{\prime }/2-x)^2+(y-y^{\prime })^2+z^2\right]^{1/2}\ }\right. \nonumber \\&\;- \left.{ \frac{1}{\ \left[(x+vy^{\prime })^2+(y-y^{\prime })^2+z^2\right]^{1/2}\ }} \right\} \nonumber \\=&\; \left.-{\frac{1}{{4\pi }}} \ln \left(y^{\prime }-y+ \sqrt{(a^{\prime }/2-x)^2+(y-y^{\prime })^2+z^2}\,\right) \right|^{b^{\prime }/2}_{y^{\prime }=-b^{\prime }/2} \nonumber \\&\;+{\frac{1}{{4\pi }}}\int \limits ^{b^{\prime }/2}_{-b^{\prime }/2} \mathrm{ d} y^{\prime } \frac{1}{\sqrt{1+v^2}} \frac{1}{\ \left[(y^{\prime }-c_1)^2+r^2/(1+v^2)-c^2_1\right]^{1/2}\ } \nonumber \\=&\; {\frac{1}{{4\pi }}} \sum _w w \ln \left(R_\mathrm{ I} -wR_2\right) \nonumber \\&\;\left.+{\frac{1}{{4\pi }}}{\frac{1}{\sqrt{1+v^2}}} \ln \left(y^{\prime }-c_1+ \sqrt{(y^{\prime }-c_1)^2+c^2_2}\,\right) \right|^{b^{\prime }/2}_{y^{\prime }=-b^{\prime }/2} \nonumber \\=&\; -{\frac{1}{{4\pi }}} \sum _w w \left\{ {\frac{1}{\sqrt{1+v^2}}}\ln (P-wP_2)- \ln (R_\mathrm{ I} -wR_2)\right\} \end{aligned}$$
(2.82)

The symbols \(c_1\), \(c^2_2\), \(P\), \(P_2\), \(R_\mathrm{ I} \), and \(R_2\) used in Eq. (2.82) have be defined in Tables 2.2 and 2.3 respectively. The integration for \(N^\mathrm{ tri} _{23}\) is totally analogy to \(N^\mathrm{ tri} _{13}\), just with a \(x\leftrightarrow y\) symmetry, therefore the derivation of \(N^\mathrm{ tri} _{23}\) will be omitted here.

The integral for the matrix element \(N^\mathrm{ tri} _{33}\) is the most complicated one, which include three parts:

$$\begin{aligned} N^\mathrm{ tri} _{33}&= -{\frac{1}{{4\pi }}} \int \limits ^{b^{\prime }/2}_{-b^{\prime }/2} \mathrm{ d} y^{\prime } \int \limits ^{a^{\prime }/2}_{-vy^{\prime }} \mathrm{ d} x^{\prime } {\frac{{z}}{{\ \left[(x-x^{\prime })^2+(y-y^{\prime })^2+z^2\right]^{3/2}\ }}} \nonumber \\&= -{\frac{1}{{4\pi }}} \int \limits ^{b^{\prime }/2}_{-b^{\prime }/2} \mathrm{ d} y^{\prime } \left.{\frac{{z}}{{\ \left[(y-y^{\prime })^2+z^2\right]\ }}} {\frac{{x^{\prime }-x}}{{\ \left[(x-x^{\prime })^2+(y-y^{\prime })^2+z^2\right]^{1/2}\ }}} \right|^{a^{\prime }/2}_{x^{\prime }=-vy^{\prime }} \nonumber \\&= -{\frac{1}{{4\pi }}}\left\{ N^{(1)}_{33} + N^{(2)}_{33} + N^{(3)}_{33}\right\} \end{aligned}$$
(2.83)

In Eq. (2.83), the derivation of the first term \(N^{(1)}_{33}\) is actually very similar to one of the two terms in Eq. (2.81) for rectangular surface; in the second term, the numerator of the integrand is \(z(-vy^{\prime }-x)\), which can be disassembled into two parts \(zv(-y^{\prime }+y)\) and \(z(-vy-x)\), and these two part just corresponds to the \(N^{(2)}_{33}\) and \(N^{(3)}_{33}\) respectively.

The integration for \(N^{(1)}_{33}\) is just straightforward:

$$\begin{aligned} N^{(1)}_{33}&= \int \limits ^{b^{\prime }/2}_{-b^{\prime }/2} \mathrm{ d} y^{\prime } {\frac{{z}}{{\ \left[(y-y^{\prime })^2+z^2\right]\ }}} {\frac{{a^{\prime }/2-x}}{{\ \left[(a^{\prime }/2-x)^2+(y-y^{\prime })^2+z^2\right]^{1/2}\ }}} \nonumber \\&= \left.\arctan \left( \frac{a^{\prime }/2-x}{z} \frac{y^{\prime }-y}{\sqrt{(a^{\prime }/2-x)^2+(y-y^{\prime })^2+z^2}}\right) \right|^{b^{\prime }/2}_{y^{\prime }=-b^{\prime }/2} \nonumber \\&= \sum _w \arctan [(a^{\prime }/2-x)R_2/(zR_\mathrm{ I} )] \end{aligned}$$
(2.84)

In the derivation for \(N^{(2)}_{33}\), complicated variables such as \(c_1\), \(c_2\) and \(c_5=y-\mathrm{ i} z\) in Table 2.3 have to be defined, and the respective integral is:

$$\begin{aligned} N^{(2)}_{33}&= \int \limits ^{b^{\prime }/2}_{-b^{\prime }/2} \mathrm{ d} y^{\prime } {\frac{{zv}}{{\ \left[(y-y^{\prime })^2+z^2\right]\ }}} {\frac{{y^{\prime }-y}}{{\ \left[(x+vy^{\prime })^2+(y-y^{\prime })^2+z^2\right]^{1/2}\ }}} \nonumber \\&= \int \limits ^{b^{\prime }/2}_{-b^{\prime }/2} \mathrm{ d} y^{\prime }{\frac{{zv}}{2}} \left[{\frac{1}{{\ y^{\prime }-c_5\ }}}+{\frac{1}{{\ y^{\prime }-c^*_5\ }}}\right] {\frac{1}{\sqrt{1+v^2}}}{\frac{1 }{{\ \left[(y^{\prime }-c_1)^2+c^2_2\right]^{1/2}\ }}}\ \ \ \ \end{aligned}$$
(2.85)

The previous integration include two terms which are complex conjugates of one another. Now let’s make an integration variable change \(y^{\prime }-c_1=c_2\sinh \theta \) with the two integration limits of the angle \(\theta \) as \(\theta _1=\sinh ^{-1}[(-b^{\prime }/2-c_1)/c_2]\) and \(\theta _2=\sinh ^{-1}[(b^{\prime }/2-c_1)/c_2]\), the integral in Eq. (2.85) has the form:

$$\begin{aligned} N^{(2)}_{33}\;&= \;{\frac{{zv}}{{2\sqrt{1+v^2}}}} \int \limits ^{\theta _2}_{\theta _1} \left[{\frac{{\mathrm{ d}\theta }}{{c_1-c_5+c_2\sinh \theta }}} + c.c.\right]\ \ \ \end{aligned}$$
(2.86)

Then make another variable change \(e^\theta =u\), and define a new constant \(\sinh \eta =(c_1-c_5)/c_2\), the integral becomes:

$$\begin{aligned} N^{(2)}_{33}\;&= \;{\frac{zv}{\sqrt{1+v^2}}} \int \limits ^{u_2}_{u_1} \left[{\frac{1}{{c_2}}}{\frac{{\mathrm{ d}\left(e^\theta \right)}}{{\left(e^\theta \right)^2+2[(c_1-c_5)/c_2]e^\theta -1}}} + c.c.\right]\ \ \ \nonumber \\&= \;{\frac{zv}{\sqrt{1+v^2}}} \int \limits ^{u_2}_{u_1} \left[\frac{1}{c_2}{\frac{\mathrm{ d}u}{(u+e^\eta )(u-e^{-\eta })}} + c.c.\right]\ \ \ \nonumber \\&= \!\! {\frac{zv}{\sqrt{1+v^2}}} \left\{ \left. {\frac{1}{{2c_2\cosh \eta }}} \ln {\frac{u-e^{-\eta }}{u+e^\eta }} \right|^{u_2}_{u\,=\,u_1} + c.c. \right\} \ \ \ \nonumber \\&= \; {\frac{zv}{\sqrt{1+v^2}}} \sum _w \Re \left\{ \frac{w}{\sqrt{(c_1-c_5)^2+c^2_2}} \ln \frac{V_+}{V_-} \right\} \nonumber \\&= \; {\frac{zv}{\sqrt{1+v^2}}} \sum _w \Re \left\{ \frac{w}{A e^{\mathrm{ i} \theta ^{\prime }/2}} \ln \frac{|V_+|e^{\mathrm{ i} \phi _+}}{|V_-|e^{\mathrm{ i} \phi _-}} \right\} \end{aligned}$$
(2.87)

In the previous derivation, the difficult part is to find integration limits \(u_1\) and \(u_2\). Actually \(\sinh ^{-1}x=\ln [x+\sqrt{x^2+1}]\), therefore \(u_1\), \(u_2\), \(e^\eta \) and \(e^{-\eta }\) are:

$$\begin{aligned} u_1=e^{\theta _1}=\frac{1}{c_2}\left[-\left(\frac{b^{\prime }}{2}+c_1\right)+\sqrt{\left(\frac{b^{\prime }}{2}+c_1\right)^2+c^2_2}\right] \nonumber \\ u_2=e^{\theta _2}=\frac{1}{c_2}\left[+\left(\frac{b^{\prime }}{2}-c_1\right)+\sqrt{\left(\frac{b^{\prime }}{2}-c_1\right)^2+c^2_2}\right] \nonumber \\ e^\eta =\frac{1}{c_2}\left[+(c_1-c_5)+\sqrt{(c_1-c_5)^2+c^2_2}\right] \nonumber \\ e^{-\eta }=\frac{1}{c_2}\left[-(c_1-c_5)+\sqrt{(c_1-c_5)^2+c^2_2}\right] \end{aligned}$$
(2.88)

By defining \(P_2={\frac{b^{\prime }}{2}}+w\ \!\! c_1\) (\(w=+1\) and \(w=-1\) are for the two integral limits \(u_1\) and \(u_2\) respectively), \(A e^{\mathrm{ i} \theta ^{\prime }/2}\), \(V_+\) and \(V_-\) will have the forms in Table 2.3:

$$\begin{aligned} \frac{u-e^{-\eta }}{u+e^\eta }= \frac{-wP_2+\sqrt{P^2_2+c^2_2}+(c_1-c_5)-\sqrt{(c_1-c_5)^2+c^2_2}}{-wP_2+\sqrt{P^2_2+c^2_2}+(c_1-c_5)+\sqrt{(c_1-c_5)^2+c^2_2}} =\frac{V_-}{V_+} \end{aligned}$$
(2.89)

The integration of \(N^{(3)}_{33}\) is similar to \(N^{(2)}_{33}\), which also includes imaginary numbers:

$$\begin{aligned} N^{(3)}_{33}&= \int \limits ^{b^{\prime }/2}_{-b^{\prime }/2} \mathrm{ d} y^{\prime } {\frac{{z}}{{\ \left[(y-y^{\prime })^2+z^2\right]\ }}} {\frac{{x+vy}}{{\ \left[(x+vy^{\prime })^2+(y-y^{\prime })^2+z^2\right]^{1/2}\ }}} \\ \nonumber&= \int \limits ^{b^{\prime }/2}_{-b^{\prime }/2} \mathrm{ d} y^{\prime } {\frac{{x+vy}}{{2\mathrm{ i} }}} \left[{\frac{{-1}}{{\ y^{\prime }-c_5\ }}} +{\frac{1}{{\ y^{\prime }-c^*_5\ }}}\right] {\frac{1}{\sqrt{1+v^2}}}{\frac{1 }{{\ \left[(y^{\prime }-c_1)^2+c^2_2\right]^{1/2}\ }}} \end{aligned}$$
(2.90)

The rest of derivations are similar to Eq. (2.87), but the result is an imaginary part:

$$\begin{aligned} N^{(3)}_{33}\;&= \; -{\frac{{x+vy}}{{2\mathrm{ i} \sqrt{1+v^2}}}} \int \limits ^{\theta _2}_{\theta _1} \left[{\frac{{\mathrm{ d} \theta }}{{c_1-c_5+c_2\sinh \theta }}} - c.c.\right]\ \ \ \nonumber \\&= \; -{\frac{{x+vy}}{{2\mathrm{ i} \sqrt{1+v^2}}}} \int \limits ^{u_2}_{u_1} \left[{\frac{1}{{c_2}}}{\frac{{\mathrm{ d} u}}{{(u+e^\eta )(u-e^{-\eta })}}} - c.c.\right]\ \ \ \nonumber \\&= \; -{\frac{{x+vy}}{\sqrt{1+v^2}}} \sum _w \Im \left\{ \frac{w}{\sqrt{(c_1-c_5)^2+c^2_2}} \ln \frac{V_+}{V_-} \right\} \nonumber \\&= \; -{\frac{{x+vy}}{\sqrt{1+v^2}}}\sum _w \Im \left\{ \frac{w}{A e^{\mathrm{ i} \theta ^{\prime }/2}} \ln \frac{|V_+|e^{\mathrm{ i} \phi _+}}{|V_-|e^{\mathrm{ i} \phi _-}} \right\} \end{aligned}$$
(2.91)

Finally, insert the results of the three parts in Eqs. (2.84), (2.87) and (2.91) into Eq. (2.81), the most difficult matrix element of a triangular surface \(N^\mathrm{ tri} _{33}\) can be found.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Wei, D. (2012). Maxwell Equations and Landau–Lifshitz Equations. In: Micromagnetics and Recording Materials. SpringerBriefs in Applied Sciences and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28577-6_2

Download citation

Publish with us

Policies and ethics