Skip to main content

Estimation of Thruster Configurations for Reconfigurable Modular Underwater Robots

  • Chapter

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 79))

Abstract

We present an algorithm for estimating thruster configurations of underwater vehicles with reconfigurable thrusters. The algorithm estimates each thruster’s effect on the vehicle’s attitude and position. The estimated parameters are used to maintain the robot’s attitude and position.

The algorithm operates by measuring impulse response of individual thrusters and thruster combinations. Statistical metrics are used to select data samples. Finally, we compute a Moore-Penrose pseudoinverse, which is used to project the desired attitude and position changes onto the thrusters.

We verify our algorithm experimentally using our robot AMOUR. The robot consists of a main body with a variable number of thrusters that can be mounted at arbitrary locations. It utilizes an IMU and a pressure sensor to continuously compute its attitude and depth. We use the algorithm to estimate different thruster configurations and show that the estimated parameters successfully control the robot. The gathering of samples together with the estimation computation takes approximately 40 seconds. Further, we show that the performance of the estimated controller matches the performance of a manually tuned controller. We also demonstrate that the estimation algorithm can adapt the controller to unexpected changes in thruster positions. The estimated controller greatly improves the stability and maneuverability of the robot when compared to the manually tuned controller.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Choi, H., Hanai, A., Choi, S., Yuh, J.: Development of an underwater robot, ODIN-III. In: Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 1, pp. 836–841 (2003)

    Google Scholar 

  2. Doniec, M., Vasilescu, I., Detweiler, C., Rus, D.: Complete se(3) underwater robot control with arbitrary thruster configurations. In: Proc. of the International Conference on Robotics and Automation, Anchorage, Alaska (2010)

    Google Scholar 

  3. Dunbabin, M., Roberts, J., Usher, K., Winstanley, G., Corke, P.: A hybrid AUV design for shallow water reef navigation. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 2105–2110 (2005)

    Google Scholar 

  4. Farrell, J., Goldenthal, B., Govindarajan, K.: Connectionist learning control systems: submarine depth control. In: Proceedings of the 29th IEEE Conference on Decision and Control 1990, vol. 4, pp. 2362–2367 (1990), doi:10.1109/CDC.1990.204050

    Google Scholar 

  5. Gaskett, C., Wettergreen, D., Zelinsky, A.: Reinforcement learning applied to the control of an autonomous underwater vehicle. In: Proc. of the Australian Conference on Robotics and Automation (AUCRA 1999), pp. 125–131 (1999)

    Google Scholar 

  6. Guo, J., Chiu, F., Wang, C.C.: Adaptive control of an autonomous underwater vehicle testbed using neural networks. In: MTS/IEEE. Challenges of Our Changing Global Environment. Conference Proceedings, OCEANS 1995, vol. 2, pp. 1033–1039 (1995), doi:10.1109/OCEANS.1995.528563

    Google Scholar 

  7. Ishii, K., Ura, T., Fujii, T.: A feedforward neural network for identification and adaptive control of autonomous underwater vehicles. In: 1994 IEEE International Conference on Neural Networks, IEEE World Congress on Computational Intelligence, vol. 5, pp. 3216–3221 (1994), doi:10.1109/ICNN.1994.374750

    Google Scholar 

  8. Kodogiannis, V.S., Lisboa, P.J.G., Lucas, J.: Neural network modelling and control for underwater vehicles. Artificial Intelligence in Engineering 10(3), 203–212 (1996), doi:10.1016/0954-1810(95)00029-1

    Article  Google Scholar 

  9. Lorentz, J., Yuh, J.: A survey and experimental study of neural network auv control. In: Proceedings of the 1996 Symposium on Autonomous Underwater Vehicle Technology, AUV 1996, pp. 109–116 (1996), doi:10.1109/AUV.1996.532406

    Google Scholar 

  10. Vaganay, J., Elkins, M., Esposito, D., O’Halloran, W., Hover, F., Kokko, M.: Ship hull inspection with the HAUV: US navy and NATO demonstrations results. In: OCEANS 2006, pp. 1–6 (2006)

    Google Scholar 

  11. Vasilescu, I., Detweiler, C., Doniec, M., Gurdan, D., Sosnowski, S., Stumpf, J., Rus, D.: Amour v: A hovering energy efficient underwater robot capable of dynamic payloads. International Journal of Robotics Research, IJRR (2010)

    Google Scholar 

  12. van de Ven, P., Flanagan, C., Toal, D.: Identification of underwater vehicle dynamics with neural networks. In: MTTS/IEEE TECHNO-OCEAN, OCEANS 2004, vol. 3, pp. 1198–1204 (2004), doi:10.1109/OCEANS.2004.1405750

    Google Scholar 

  13. van de Ven, P.W., Flanagan, C., Toal, D.: Neural network control of underwater vehicles. Engineering Applications of Artificial Intelligence 18(5), 533–547 (2005), doi:10.1016/j.engappai.2004.12.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Doniec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Doniec, M., Detweiler, C., Rus, D. (2014). Estimation of Thruster Configurations for Reconfigurable Modular Underwater Robots. In: Khatib, O., Kumar, V., Sukhatme, G. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28572-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28572-1_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28571-4

  • Online ISBN: 978-3-642-28572-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics