Advertisement

An Experimental Study of Time Scales and Stability in Networked Multi-Robot Systems

  • Nathan MichaelEmail author
  • Mac Schwager
  • Vijay Kumar
  • Daniela Rus
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 79)

Summary

This paper considers the effect of network-induced time delays on the stability of distributed controllers for groups of robots. A linear state space model is proposed for analyzing the coupled interaction of the information flow over the network with the dynamics of the robots. It is shown both analytically and experimentally that control gain, network update rate, and communication and control graph topologies are all critical factors determining the stability of the group of robots. Experiments with a group of flying quadrotor robots demonstrate the effect of different control gains for two different control graph topologies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Michael, N., Zavlanos, M.M., Kumar, V., Pappas, G.J.: Maintaining Connectivity in Mobile Robot Networks. In: Khatib, O., Kumar, V., Pappas, G.J. (eds.) Experimental Robotics. STAR, vol. 54, pp. 117–126. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    McLurkin, J.: Analysis and implementation of distributed algorithms for Multi-Robot systems. Ph.D. thesis, Massachusetts Institute of Technology (2008)Google Scholar
  3. 3.
    Tanner, H.G., Pappas, G.J., Kumar, V.: Leader-to-formation stability. IEEE Trans. Robot. Autom. 20(3), 443–455 (2004)CrossRefGoogle Scholar
  4. 4.
    Cai, Y., Hua, K., Phillips, A.: Leveraging 1-hop neighborhood knowledge for efficient flooding in wireless ad hoc networks. In: Proc. of the Intl. Perf. Comput. and Commun. Conf., Phoenix, AZ, pp. 347–357 (April 2005)Google Scholar
  5. 5.
    Julian, B.J., Schwager, M., Angermann, M., Rus, D.: A location-based algorithm for multi-hopping state estimates within a distributed robot team. In: Proc. of the Intl. Conf. on Field and Service Robot., Cambridge, MA (July 2009)Google Scholar
  6. 6.
    Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback Control of Dynamical Systems. Addison-Wesley, Reading (1994)Google Scholar
  7. 7.
    Brandicky, M.S., Phillips, S.M., Zhang, W.: Stability of networked control systems: Explicit analysis of delay. In: Proc. of the Amer. Control Conf., Chicago, IL, pp. 2352–2357 (June 2000)Google Scholar
  8. 8.
    Zhang, W., Branicky, M.S., Phillips, S.M.: Stability of networked control systems. IEEE Control Syst. Mag. 21(1), 84–99 (2001)CrossRefGoogle Scholar
  9. 9.
    Tanner, H.G., Christodoulakis, D.K.: Decentralized cooperative control of heterogeneous vehicle groups. Robot. and Auton. Syst. 55(11), 811–823 (2007)CrossRefGoogle Scholar
  10. 10.
    Olfati-Saber, R., Murray, R.R.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Blondel, V.D., Hendrickx, J.M., Olshevsky, A., Tsitsiklis, J.N.: Convergence in multiagent coordination, consensus, and flocking. In: Proc. of the Joint IEEE Conf. on Decision and Control and Euro. Control Conf., Seville, Spain, pp. 2996–3000 (December 2005)Google Scholar
  12. 12.
    Liu, X., Goldsmith, A., Mahal, S.S., Hendrick, J.K.: Effects of communication delay on string stability in vehicle platoons. In: Proc. of IEEE Intell. Transp. Syst. Conf., Oakland, CA, pp. 625–630 (August 2001)Google Scholar
  13. 13.
    Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control systems. Proc. of the IEEE 95(1), 138–162 (2007)CrossRefGoogle Scholar
  14. 14.
    Schwager, M., Michael, N., Kumar, V., Rus, D.: Time scales and stability in networked multi-robot systems. In: Proc. of the IEEE Intl. Conf. on Robot. and Autom., Shanghai, China (May 2011) (submitted)Google Scholar
  15. 15.
    Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49(9), 1465–1476 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Vicon Motion Systems, Inc., http://www.vicon.com
  17. 17.
    Ascending Technologies, GmbH, http://www.asctec.de
  18. 18.
    Robot Operating System (ROS), http://www.ros.org
  19. 19.
    Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The GRASP multiple micro UAV testbed. IEEE Robot. Autom. Mag. 17(3), 56–65 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2014

Authors and Affiliations

  • Nathan Michael
    • 1
    Email author
  • Mac Schwager
    • 1
    • 2
  • Vijay Kumar
    • 1
  • Daniela Rus
    • 2
  1. 1.GRASP LaboratoryUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.CSAILMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations