Aerial Grasping from a Helicopter UAV Platform

  • Paul E. PoundsEmail author
  • Aaron M. Dollar
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 79)


We aim to extend the functionality of Unmanned Aerial Vehicles (UAVs) beyond passive observation to active interaction with objects. Of particular interest is grasping objects with hovering robots. This task is difficult due to the unstable dynamics of flying vehicles and limited positional accuracy demonstrated by existing hovering vehicles. Conventional robot grippers require centimetre-level positioning accuracy to successfully grasp objects. Our approach employs passive mechanical compliance and adaptive underactuation in a gripper to allow for large positional displacements between the aircraft and target object. In this paper, we present preliminary analysis and experiments for reliable grasping of unstructured objects with a robot helicopter. Key problems associated with this task are discussed, including hover precision, flight stability in the presence of compliant object contact, and aerodynamic disturbances. We evaluate performance of the initial proof-of-concept prototype and show that this approach to object capture and retrieval is viable.


Target Object Unmanned Aerial Vehicle Proportional Integral Derivative Proportional Integral Derivative Control Autonomous Helicopter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amidi, O., Kanade, T., Miller, J.: Vision-Based Autonomous Helicopter Research at Carnegie Mellon Robotics Institute 1991–1997. In: Proc. American Helicopter Society International Conference (1998)Google Scholar
  2. 2.
    Bernard, M., Kondak, K.: Generic Slung Load Transportation System Using small Size Helicopters. In: Proc. IEEE International Conference on Robotics and Automation (2009)Google Scholar
  3. 3.
    Bisgaard, M., Bendtsen, J., la Cour-Harbo, A.: Modelling of Generic Slung Load System. Journal of Guidance, Control and Dynamics 32(2) (2009)Google Scholar
  4. 4.
    Borenstein, J.: The Hoverbot — An Electrically Powered Flying Robot. University of Michigan (1992, 2009) (unpublished paper),
  5. 5.
    Butterfass, J., Grebenstein, M., Liu, H., Hirzinger, G.: DLR-Hand II: Next Generation of a Dextrous Robot Hand. In: Proc. International Conference on Robotics and Automation (2001)Google Scholar
  6. 6.
    Central Intelligence Agency, Robert Fulton’s Skyhook and Operation Coldfeet (September 2010),
  7. 7.
    Cutkosky, M.R., Kao, I.: Computing and Controlling the Compliance of a Robotic Hand. IEEE Transactions on Robotics and Automation 5(2), 151–165 (1989)CrossRefGoogle Scholar
  8. 8.
    Dollar, A.M., Howe, R.D.: A Robust Compliant Grasper via Shape Deposition Manufacturing. IEEE/ASME Transactions on Mechatronics 11(2), 154–161 (2006)CrossRefGoogle Scholar
  9. 9.
    Dollar, A.M., Howe, R.D.: Simple, Robust Autonomous Grasping in Unstructured Environments. In: Proc. IEEE/RAS International Conference on Robotics and Automation (2007)Google Scholar
  10. 10.
    Gentili, L., Naldi, R., Marconi, L.: Modeling and Control of VTOL UAVs Interacting With the Environment. In: Proc. IEEE Conference on Decision and Control (2008)Google Scholar
  11. 11.
    Hirose, S., Umetani, Y.: The Development of Soft Gripper for the Versatile Robot Hand. Mechanism and Machine Theory 13, 351–359 (1978)CrossRefGoogle Scholar
  12. 12.
    Kaufman, L., Schultz, E.: The stability and control of tethered helicopters. Journal of the American Helicopter Society 7(4) (1962)Google Scholar
  13. 13.
    Kuntz, N., Oh, P.: Development of Autonomous Cargo Transport for an Unmanned Aerial Vehicle Using Visual Servoing. In: Proc. Digital Systems and Control Conference (2008)Google Scholar
  14. 14.
    Laliberte, T., Birglen, L., Gosselin, C.: Underactuation in Robotic Grasping Hands. Machine Intelligence & Robotic Control 4(3), 1–11 (2002)Google Scholar
  15. 15.
    Leishman, J.G.: Principles of Helicopter Aerodynamics, 2nd edn. Cambridge University Press, New York (2006)Google Scholar
  16. 16.
    Lotti, F., Tiezzi, P., Vassura, G., Biagiotti, L., Palli, G., Melchiorri, C.: Development of UB Hand 3: Early Results. In: Proc. International Conference on Robotics and Automation (2005)Google Scholar
  17. 17.
    Lovchik, C.S., Diftler, M.A.: The Robonaut Hand: A Dexterous Robot Hand for Space. In: Proc. IEEE/RAS International Conference on Robotics and Automation (1999)Google Scholar
  18. 18.
    Mammarella, M., Campa, G., Napolitano, M., Fravolini, M., Perhinschi, R.: Machine Vision/GPS Integration Using EKF for the UAV Aerial Refueling Problem. IEEE Transactions on Systems, Man and Cybernetics 38(6) (2008)Google Scholar
  19. 19.
    Mason, M.T.: Compliance and Force Control for Computer controlled Manipulators. IEEE Transactions on Systems, Man, and Cybernetics 11(6), 418–432 (1981)CrossRefGoogle Scholar
  20. 20.
    Michael, N., Fink, J., Kumar, V.: Cooperative Manipulation and Transportation with Aerial Robots. In: Proc. Robotic Science and Systems (2009)Google Scholar
  21. 21.
    Oh, S.R., Agrawal, S., Patha, K., Pota, H.R., Garrett, M.: Autonomous helicopter landing on a moving platform using a tether. In: Proc. Int. Conference on Robotics and Automation (2005)Google Scholar
  22. 22.
    Oh, S.R., Agrawal, S., Pathak, K., Pota, H.R., Garrett, M.: Approaches for a tether-guided landing of an autonomous helicopter. IEEE Transactions on Robotics 22, 536–544 (2006)CrossRefGoogle Scholar
  23. 23.
    Pounds, P.E., Dollar, A.M.: Hovering Stability of Helicopters With Elastic Tethers. In: Proc. ASME Dynamic Systems and Control Conference (2010)Google Scholar
  24. 24.
    Pounds, P., Mahony, R.: Small-Scale Aeroelastic Rotor Simulation, Design and Fabrication. In: Proc. Australasian Conference on Robotics and Automation (2005)Google Scholar
  25. 25.
    Prouty, R.: Helicopter Performance Stability and Control. Krieg Publishing Company (2002)Google Scholar
  26. 26.
    Raz, R., Rosen, A., Ronen, T.: Active Aerodynamic Stabilization of a Helicopter/Sling-Load System. Journal of Aircraft 26(9) (1988)Google Scholar
  27. 27.
    Salisbury, K.J.: Active Stiffness Control of a Manipulator in Cartesian Coordinates. In: Proc. IEEE Conference on Decision and Control, pp. 95–100 (1980)Google Scholar
  28. 28.
    Schmidt, G., Swik, R.: Automatic hover control of an unmanned tethered rotorplatform. Automatica 10(4), 393–394, IN1–IN2, 395–403 (1974)CrossRefGoogle Scholar
  29. 29.
    Scott, D., Toal, M., Dale, J.: Vision Based Sensing for Autonomous In-flight Refueling. In: Proc. of SPIE, vol. 6561 (2007)Google Scholar
  30. 30.
    Townsend, W.T.: The BarrettHand Grasper - Progammably Flexible Part Handling and Assembly. Industrial Robot – An International Journal 10(3), 181–188 (2000)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Ulrich, N., Kumar, V.: Grasping Using Fingers With Coupled Joints. In: Proc. ASME Mechanisms Conference (1988)Google Scholar
  32. 32.
    U.S. Centennial of Flight Commission, Airmail and the Growth of the Airlines (September 2010),

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.University of QueenslandSt LuciaAustralia
  2. 2.Yale UniversityNew HavenUSA

Personalised recommendations