Skip to main content

Coarse-Grained Protein Models in Structure Prediction

  • Chapter
  • 4241 Accesses

Part of the book series: Springer Series in Bio-/Neuroinformatics ((SSBN,volume 1))

Abstract

The knowledge of the three-dimensional structure of proteins is crucial for understanding many important biological processes. Most biologically important proteins are too large to handle for the classical simulation tools. In such cases, coarse-grained (CG) models nowadays offer various opportunities for efficient conformational sampling and thus prediction of the three-dimensional structure. A variety of CG models have been proposed, each based on a similar framework consisting of a set of conceptual components such as protein representation, force field, sampling, etc. In this chapter we discuss these components, highlighting ideas which have proven to be the most successful. As CG methods are usually part of multistage procedures, we also describe approaches used for the incorporation of homology data and all-atom reconstruction methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abagyan, R.A., Mazur, A.K.: New methodology for computer-aided modelling of biomolecular structure and dynamics. 2. Local deformations and cycles. Journal of Biomolecular Structure & Dynamics 6(4), 833–845 (1989)

    Article  Google Scholar 

  • Adcock, S.A.: Peptide backbone reconstruction using dead-end elimination and a knowledge-based forcefield. Journal of Computational Chemistry 25(1), 16–27 (2004)

    Article  Google Scholar 

  • Altschul, M., Simpson, K.W., Dykes, N.L., Mauldin, E.A., Reubi, J.C., Cummings, J.F.: Evaluation of somatostatin analogues for the detection and treatment of gastrinoma in a dog. J. Small Anim. Pract. 38(7), 286–291 (1997a)

    Article  Google Scholar 

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997b)

    Article  Google Scholar 

  • Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181(4096), 223–230 (1973)

    Article  Google Scholar 

  • Anfinsen, C.B., Haber, E., Sela, M., White Jr., F.H.: The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. U S A 47, 1309–1314 (1961)

    Article  Google Scholar 

  • Berman, H., Henrick, K., Nakamura, H.: Announcing the worldwide Protein Data Bank. Nat. Struct. Biol. 10(12), 980 (2003)

    Article  Google Scholar 

  • Betancourt, M.: A reduced protein model with accurate native-structure identification ability. Proteins 53(4), 889–907 (2003)

    Article  Google Scholar 

  • Blundell, T., Carney, D., Gardner, S., Hayes, F., Howlin, B., Hubbard, T., Overington, J., Singh, D.A., Sibanda, B.L., Sutcliffe, M.: 18th Sir Hans Krebs lecture. Knowledge-based protein modelling and design. Eur. J. Biochem. 172(3), 513–520 (1988)

    Article  Google Scholar 

  • Boniecki, M., Rotkiewicz, P., Skolnick, J., Kolinski, A.: Protein fragment reconstruction using various modeling techniques. J. Comput. Aided Mol. Des. 17(11), 725–738 (2003)

    Article  Google Scholar 

  • Buchete, N.V., Straub, J.E., Thirumalai, D.: Orientation-dependent coarse-grained potentials derived by statistical analysis of molecular structural databases. Polymer 597–608 (2004)

    Google Scholar 

  • Bystroff, C., Baker, D.: Prediction of local structure in proteins using a library of sequence-structure motifs. Journal of Molecular Biology 281(3), 565–577 (1998)

    Article  Google Scholar 

  • Camproux, A.C., Gautier, R., Tuffery, P.: A hidden markov model derived structural alphabet for proteins. J. Mol. Biol. 339(3), 591–605 (2004)

    Article  Google Scholar 

  • Covell, D.G.: Folding protein alpha-carbon chains into compact forms by Monte Carlo methods. Proteins 14(3), 409–420 (1992)

    Article  Google Scholar 

  • Czaplewski, C., Liwo, A., Makowski, M., Ołdziej, S., Scheraga, H.A.: Coarse-Grained Models of Proteins: Theory and Applications. In: Kolinski, A. (ed.) Multiscale Approaches to Protein Modeling, pp. 85–109. Springer, New York (2011)

    Google Scholar 

  • Czaplewski, C., Rodziewicz-Motowidlo, S., Liwo, A., Ripoll, D.R., Wawak, R.J., Scheraga, H.A.: Molecular simulation study of cooperativity in hydrophobic association. Protein Sci. 9(6), 1235–1245 (2000)

    Article  Google Scholar 

  • Dashevskii, V.G.: Lattice model for globular protein three-dimensional structure. Mol. Biol (Mosk) 14(1), 105–117 (1980)

    Google Scholar 

  • De Sancho, D., Rey, A.: Evaluation of coarse grained models for hydrogen bonds in proteins. J. Comput. Chem. (2007)

    Google Scholar 

  • Eswar, N., Eramian, D., Webb, B., Shen, M.Y., Sali, A.: Protein structure modeling with MODELLER. Methods Mol. Biol. 426, 145–159 (2008)

    Article  Google Scholar 

  • Ferrenberg, A., Landau, D.P., Swendsen, R.: Statistical errors in histogram reweighting. Physical Review E 51(5), 5092 (1995)

    Article  Google Scholar 

  • Ferrenberg, A., Swendsen, R.: Optimized Monte Carlo data analysis. Physical Review Letters 63(12), 1195–1198 (1989)

    Article  Google Scholar 

  • Gautier, R., Camproux, A.C., Tuffery, P.: SCit: web tools for protein side chain conformation analysis. Nucleic Acids Res. 32 (Web Server Issue), W508–W511 (2004)

    Google Scholar 

  • Geyer, C.J.: Markov chain Monte Carlo maximum likelihood. In: Computing Science and Statistics: Proceedings of 23rd Symposium on the Interface Interface Foundation, Fairfax Station, pp. 156–163 (1991), doi:citeulike-article-id:606345

    Google Scholar 

  • Go, N., Scheraga, H.: Ring closure and local conformational deformations of chain molecules. Macromolecules 3, 178–187 (1970)

    Article  Google Scholar 

  • Go, N., Scheraga, H.A.: Ring-Closure in Chain Molecules with Cn,I, or S2n Symmetry. Macromolecules 6(2), 273–281 (1973)

    Article  Google Scholar 

  • Godzik, A., Kolinski, A., Skolnick, J.: Lattice representations of globular proteins: How good are they? Journal of Computational Chemistry 14(10), 1194–1202 (1993)

    Article  Google Scholar 

  • Grishaev, A., Bax, A.: An Empirical Backbone−Backbone Hydrogen-Bonding Potential in Proteins and Its Applications to NMR Structure Refinement and Validation. Journal of the American Chemical Society 126(23), 7281–7292 (2004)

    Article  Google Scholar 

  • Gront, D., Kmiecik, S., Blaszczyk, M., Ekonomiuk, D., Koliński, A.: Optimization of protein models. Wiley Interdisciplinary Reviews: Computational Molecular Science 2(3), 479–493 (2012)

    Article  Google Scholar 

  • Gront, D., Kmiecik, S., Kolinski, A.: Backbone building from quadrilaterals: a fast and accurate algorithm for protein backbone reconstruction from alpha carbon coordinates. J. Comput. Chem. 28(9), 1593–1597 (2007)

    Article  Google Scholar 

  • Gront, D., Kolinski, A., Skolnick, J.: Comparison of three Monte Carlo conformational search strategies for a proteinlike homopolymer model: Folding thermodynamics and identification of low-energy structures. The Journal of Chemical Physics 113(12), 5065–5071 (2000)

    Article  Google Scholar 

  • Gront, D., Kolinski, A., Skolnick, J.: A new combination of replica exchange Monte Carlo and histogram analysis for protein folding and thermodynamics. The Journal of Chemical Physics 115(3), 1569–1574 (2001)

    Article  Google Scholar 

  • Gront, D., Kulp, D., Vernon, R., Strauss, C., Baker, D.: Generalized fragment picking in rosetta: design, protocols and applications. PLoS ONE  6(8), e23294 (2011)

    Google Scholar 

  • Guardiani, C., Livi, R., Cecconi, F.: Coarse Grained Modeling and Approaches to Protein Folding. Curr. Bioinform. 5(3), 217–240 (2010)

    Article  Google Scholar 

  • Hansmann, U.: Parallel Tempering Algorithm for Conformational Studies of Biological Molecules. Chem. Phys. Lett. 281, 140–150 (1997)

    Article  Google Scholar 

  • Heath, A.P., Kavraki, L.E., Clementi, C.: From coarse-grain to all-atom: toward multiscale analysis of protein landscapes. Proteins 68(3), 646–661 (2007)

    Article  Google Scholar 

  • Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. U S A 89(22), 10915–10919 (1992)

    Article  Google Scholar 

  • Hinds, D.A., Levitt, M.: A lattice model for protein structure prediction at low resolution. Proc. Natl. Acad. Sci. U S A 89(7), 2536–2540 (1992)

    Article  Google Scholar 

  • Holm, L., Sander, C.: Database algorithm for generating protein backbone and side-chain co-ordinates from a C alpha trace application to model building and detection of co-ordinate errors. J. Mol. Biol. 218(1), 183–194 (1991)

    Article  Google Scholar 

  • Illergard, K., Ardell, D.H., Elofsson, A.: Structure is three to ten times more conserved than sequence–a study of structural response in protein cores. Proteins 77(3), 499–508 (2009)

    Article  Google Scholar 

  • Irbäck, A., Mohanty, S.: PROFASI: A Monte Carlo simulation package for protein folding and aggregation. J. Comput. Chem. 27(13), 1548–1555 (2006)

    Article  Google Scholar 

  • Jamroz, M., Kolinski, A.: Modeling of loops in proteins: a multi-method approach. BMC Structural Biology 10(1), 5+ (2010)

    Google Scholar 

  • Jones, T.A., Thirup, S.: Using known substructures in protein model building and crystallography. EMBO J. 5(4), 819–822 (1986)

    Google Scholar 

  • Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9(9), 646–652 (2002)

    Article  Google Scholar 

  • Kazmierkiewicz, R., Liwo, A., Scheraga, H.A.: Energy-based reconstruction of a protein backbone from its alpha-carbon trace by a Monte-Carlo method. J. Comput. Chem. 23(7), 715–723 (2002)

    Article  Google Scholar 

  • Kazmierkiewicz, R., Liwo, A., Scheraga, H.A.: Addition of side chains to a known backbone with defined side-chain centroids. Biophys. Chem. 100(1-3), 261–280 (2003)

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Kolinski, A.: Protein modeling and structure prediction with a reduced representation. Acta Biochimica Polonica 51(2), 349–371 (2004)

    Google Scholar 

  • Kolinski, A., Betancourt, M.R., Kihara, D., Rotkiewicz, P., Skolnick, J.: Generalized comparative modeling (GENECOMP): a combination of sequence comparison, threading, and lattice modeling for protein structure prediction and refinement. Proteins 44(2), 133–149 (2001)

    Article  Google Scholar 

  • Kolinski, A., Galazka, W., Skolnick, J.: Computer Design of Idealized Beta-Motifs. J. Chem. Phys. 103(23), 10286–10297 (1995a)

    Article  Google Scholar 

  • Kolinski, A., Gront, D.: Comparative modeling without implicit sequence alignments. Bioinformatics 23(19), 2522–2527 (2007)

    Article  Google Scholar 

  • Kolinski, A., Ilkowski, B., Skolnick, J.: Dynamics and thermodynamics of beta-hairpin assembly: Insights from various simulation techniques. Biophysical Journal 77(6), 2942–2952 (1999a)

    Article  Google Scholar 

  • Kolinski, A., Milik, M., Rycombel, J., Skolnick, J.: A Reduced Model of Short-Range Interactions in Polypeptide-Chains. J. Chem. Phys. 103(10), 4312–4323 (1995b)

    Article  Google Scholar 

  • Kolinski, A., Milik, M., Skolnick, J.: Static and Dynamic Properties of a New Lattice Model of Polypeptide-Chains. J. Chem. Phys. 94(5), 3978–3985 (1991)

    Article  Google Scholar 

  • Kolinski, A., Rotkiewicz, P., Ilkowski, B., Skolnick, J.: A method for the improvement of threading-based protein models. Proteins 37(4), 592–610 (1999b)

    Article  Google Scholar 

  • Kolinski, A., Skolnick, J.: Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins 18(4), 338–352 (1994)

    Article  Google Scholar 

  • Kolinski, A., Skolnick, J.: Lattice Models of Protein Folding, Dynamics and Thermodynamics. Landes (1996), doi:citeulike-article-id:877252

    Google Scholar 

  • Kolinski, A., Skolnick, J.: Assembly of protein structure from sparse experimental data: an efficient Monte Carlo model. Proteins 32(4), 475–494 (1998)

    Article  Google Scholar 

  • Kolinski, A., Skolnick, J.: Reduced models of proteins and their applications. Polymer 45(2), 511–524 (2004)

    Article  Google Scholar 

  • Kolinski, M., Filipek, S.: Study of a structurally similar kappa opioid receptor agonist and antagonist pair by molecular dynamics simulations. J. Mol. Model. 16(10), 1567–1576 (2010)

    Article  Google Scholar 

  • Kortemme, T., Morozov, A.V., Baker, D.: An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J. Mol. Biol. 326(4), 1239–1259 (2003)

    Article  Google Scholar 

  • Krigbaum, W.R., Lin, S.F.: Monte-Carlo Simulation of Protein Folding Using a Lattice Model. Macromolecules 15(4), 1135–1145 (1982)

    Article  Google Scholar 

  • Krivov, G.G., Shapovalov, M.V., Dunbrack Jr., R.L.: Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77(4), 778–795 (2009)

    Article  Google Scholar 

  • Kryshtafovych, A., Fidelis, K., Moult, J.: CASP9 results compared to those of previous CASP experiments. Proteins 79(suppl.10), 196–207 (2011)

    Article  Google Scholar 

  • Kumar, S., Rosenberg, J., Bouzida, D., Swendsen, R., Kollman, P.: Multidimensional free-energy calculations using the weighted histogram analysis method. Journal of Computational Chemistry 16(11), 1339–1350 (1995)

    Article  Google Scholar 

  • Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157(1), 105–132 (1982)

    Article  Google Scholar 

  • Lee, J., Scheraga, H.A., Rackovsky, S.: New optimization method for conformational energy calculations on polypeptides: Conformational space annealing. Journal of Computational Chemistry 18(9), 1222–1232 (1997)

    Article  Google Scholar 

  • Levitt, M.: A simplified representation of protein conformations for rapid simulation of protein folding. Journal of Molecular Biology 104(1), 59–107 (1976)

    Article  Google Scholar 

  • Levitt, M., Warshel, A.: Computer simulation of protein folding. Nature 253(5494), 694–698 (1975)

    Article  Google Scholar 

  • Levy-Moonshine, A., Amir, E.-A., Keasar, C.: Enhancement of beta-sheet assembly by cooperative hydrogen bonds potential. Bioinformatics 25(20), 2639–2645 (2009)

    Article  Google Scholar 

  • Li, Z., Scheraga, H.A.: Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc. Natl. Acad. Sci. U S A 84(19), 6611–6615 (1987)

    Article  MathSciNet  Google Scholar 

  • Liwo, A., Czaplewski, C., Ołdziej, S., Rojas, A., Kazmierkiewicz, R., Makowski, M., Murarka, R., Scheraga, H.: Simulation of Protein Structure and Dynamics with the Coarse-Grained UNRES Force Field. In: Coarse-Graining of Condensed Phase and Biomolecular Systems. CRC Press (2008), doi:citeulike-article-id:3822586

    Google Scholar 

  • Liwo, A., Czaplewski, C., Pillardy, J., Scheraga, H.: Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field. The Journal of Chemical Physics 115(5), 2323–2347 (2001)

    Article  Google Scholar 

  • Liwo, A., He, Y., Scheraga, H.A.: Coarse-grained force field: general folding theory. Phys. Chem. Chem. Phys. 13(38), 16890–16901 (2011)

    Article  Google Scholar 

  • Liwo, A., Khalili, M., Scheraga, H.: Ab initio simulations of protein-folding pathways by molecular dynamics with the united-residue model of polypeptide chains. Proceedings of the National Academy of Sciences of the United States of America 102(7), 2362–2367 (2005)

    Article  Google Scholar 

  • Liwo, A., Pincus, M.R., Wawak, R.J., Rackovsky, S., Scheraga, H.A.: Prediction of protein conformation on the basis of a search for compact structures: test on avian pancreatic polypeptide. Protein Science: A Publication of the Protein Society 2(10), 1715–1731 (1993)

    Article  Google Scholar 

  • Maupetit, J., Gautier, R., Tuffery, P.: SABBAC: online Structural Alphabet-based protein BackBone reconstruction from Alpha-Carbon trace. Nucleic Acids Res. 34 (Web Server Issue), W147–W151 (2006)

    Google Scholar 

  • Mazur, A.K., Dorofeev, V.E., Abagyan, R.A.: Derivation and testing of explicit equations of motion for polymers described by internal coordinates. Journal of Computational Physics 92(2), 261–272 (1991)

    Article  MATH  Google Scholar 

  • Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  • Metropolis, N., Ulam, S.: The Monte Carlo Method. Journal of the American Statistical Association 44(247), 335–341 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  • Milik, M., Kolinski, A., Skolnick, J.: Algorithm for rapid reconstruction of protein backbone from alpha carbon coordinates. Journal of Computational Chemistry 18(1), 80–85 (1997)

    Article  Google Scholar 

  • Morozov, A., Lin, S.: Accuracy and convergence of the Wang-Landau sampling algorithm. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 76(2) (2007)

    Google Scholar 

  • Moult, J., Fidelis, K., Kryshtafovych, A., Tramontano, A.: Critical assessment of methods of protein structure prediction (CASP)–round IX. Proteins 79(suppl.10), 1–5 (2011)

    Article  Google Scholar 

  • Park, B.H., Levitt, M.: The complexity and accuracy of discrete state models of protein structure. Journal of Molecular Biology 249(2), 493–507 (1995)

    Article  Google Scholar 

  • Parsons, J., Holmes, B., Rojas, M., Tsai, J., Strauss, C.: Practical conversion from torsion space to Cartesian space forin silico protein synthesis. Journal of Computational Chemistry 26(10), 1063–1068 (2005)

    Article  Google Scholar 

  • Payne, P.W.: Reconstruction of Protein Conformations from Estimated Positions of the C-Alpha Coordinates. Protein Science 2(3), 315–324 (1993)

    Article  Google Scholar 

  • Pruitt, K.D., Tatusova, T., Maglott, D.R.: NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35(Database Issue), D61–D65 (2007)

    Google Scholar 

  • Rohl, C., Strauss, C., Misura, K., Baker, D.: Protein Structure Prediction Using Rosetta. Numerical Computer Methods, Part D 383, 66–93 (2004), doi:citeulike-article-id:441859

    Google Scholar 

  • Rotkiewicz, P., Skolnick, J.: Fast procedure for reconstruction of full-atom protein models from reduced representations. J. Comput. Chem. 29(9), 1460–1465 (2008)

    Article  Google Scholar 

  • Sali, A., Blundell, T.L.: Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234(3), 779–815 (1993)

    Article  Google Scholar 

  • Shenoy, S.R., Jayaram, B.: Proteins: sequence to structure and function–current status. Curr. Protein Pept. Sci. 11(7), 498–514 (2010)

    Article  Google Scholar 

  • Shi, J., Blundell, T.L., Mizuguchi, K.: FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol. 310(1), 243–257 (2001)

    Article  Google Scholar 

  • Sippl, M.J.: Boltzmann’s principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. J. Comput. Aided Mol. Des. 7(4), 473–501 (1993)

    Article  Google Scholar 

  • Skolnick, J., Kolinski, A.: Dynamic Monte Carlo simulations of globular protein folding/unfolding pathways. I. Six-member, Greek key beta-barrel proteins. J. Mol. Biol. 212(4), 787–817 (1990a)

    Article  Google Scholar 

  • Skolnick, J., Kolinski, A.: Simulations of the folding of a globular protein. Science 250(4984), 1121–1125 (1990b)

    Article  Google Scholar 

  • Skolnick, J., Kolinski, A., Brooks III, C.L., Godzik, A., Rey, A.: 3rd, Godzik A, Rey A A method for predicting protein structure from sequence. Curr. Biol. 3(7), 414–423 (1993)

    Article  Google Scholar 

  • Soding, J.: Protein homology detection by HMM-HMM comparison. Bioinformatics 21(7), 951–960 (2005)

    Article  Google Scholar 

  • Sugita, Y., Okamoto, Y.: Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters 314(1-2), 141–151 (1999)

    Article  Google Scholar 

  • Swendsen, R., Wang, J.: Replica Monte Carlo Simulation of Spin-Glasses. Physical Review Letters 57(21), 2607–2609 (1986)

    Article  MathSciNet  Google Scholar 

  • Thompson, J., Baker, D.: Incorporation of evolutionary information into Rosetta comparative modeling. Proteins 79(8), 2380–2388 (2011)

    Article  Google Scholar 

  • Trojanowski, S., Rutkowska, A., Kolinski, A.: TRACER. A new approach to comparative modeling that combines threading with free-space conformational sampling. Acta Biochimica Polonica 57(1), 125–133 (2010)

    Google Scholar 

  • Vendruscolo, M., Najmanovich, R., Domany, E.: Can a pairwise contact potential stabilize native protein folds against decoys obtained by threading? Proteins 38(2), 134–148 (2000)

    Article  Google Scholar 

  • Vinals, J., Kolinski, A., Skolnick, J.: Numerical study of the entropy loss of dimerization and the folding thermodynamics of the GCN4 leucine zipper. Biophys. J. 83(5), 2801–2811 (2002)

    Article  Google Scholar 

  • Voth, G. (ed.): Coarse-Graining of Condensed Phase and Biomolecular Systems. CRC Press Taylor & Francis, Farmington, CT (2008)

    Google Scholar 

  • Wales, D.: Energy Landscapes: Applications to Clusters, Biomolecules and Glasses (Cambridge Molecular Science). Cambridge University Press (2004), doi:citeulike-article-id:755112

    Google Scholar 

  • Wedemeyer, W.J., Scheraga, H.A.: Exact analytical loop closure in proteins using polynomial equations. Journal of Computational Chemistry 20(8), 819–844 (1999)

    Article  Google Scholar 

  • Xu, D., Zhang, J., Roy, A., Zhang, Y.: Automated protein structure modeling in CASP9 by I-TASSER pipeline combined with QUARK-based ab initio folding and FG-MD-based structure refinement. Proteins 79(suppl.10), 147–160 (2011)

    Article  Google Scholar 

  • Zhang, J., He, Z., Wang, Q., Barz, B., Kosztin, I., Shang, Y., Xu, D.: Prediction of protein tertiary structures using MUFOLD. Methods Mol. Biol. 815, 3–13 (2012)

    Article  Google Scholar 

  • Zheng, W.: Accurate flexible fitting of high-resolution protein structures into cryo-electron microscopy maps using coarse-grained pseudo-energy minimization. Biophys. J. 100(2), 478–488 (2011)

    Article  Google Scholar 

  • Zhou, H., Zhou, Y.: Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci. 11(11), 2714–2726 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blaszczyk, M., Gront, D., Kmiecik, S., Ziolkowska, K., Panek, M., Kolinski, A. (2014). Coarse-Grained Protein Models in Structure Prediction. In: Liwo, A. (eds) Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes. Springer Series in Bio-/Neuroinformatics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28554-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28554-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28553-0

  • Online ISBN: 978-3-642-28554-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics