Skip to main content

Part of the book series: Springer Series in Bio-/Neuroinformatics ((SSBN,volume 1))

Abstract

Intrinsically unstructured/disordered proteins (IUPs/IDPs) exist as highly flexible conformational ensembles without adopting a stable three-dimensional structure. Experimental and bioinformatical studies in the past two decades have shown that these proteins play a central role in various signaling and regulatory processes. Accordingly, their frequency in higher eukaryotes reaches high proportions and their malfunction can be connected to a wide variety of diseases. Recognizing the biological importance of these proteins motivated researchers to understand various aspects of disordered proteins and protein segments from the viewpoint of biochemistry, molecular biology and pharmacology. In general, IDPs are difficult to study experimentally because of the lack of a unique structure in the isolated form. Nevertheless, various bioinformatics tools developed over the last few years enable their identification and characterization using only the amino acid sequence. In this chapter — after a brief introduction to IDPs in general — we present a small survey of current methods aimed at identifying disordered proteins or protein segments, focusing on those that are publicly available as web servers. We also discuss in more detail approaches that predict disordered regions and specific regions involved in protein binding by modeling the physical background of protein disorder. Furthermore, we argue that the heterogeneity of disordered segments needs to be taken into account for a better understanding of protein disorder and the correct use and interpretation of the output of disorder prediction algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wright, P.E., Dyson, H.J.: Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293(2), 321–331 (1999), doi:10.1006/jmbi.1999.3110, S0022-2836(99)93110-8 [pii]

    Article  Google Scholar 

  2. Dunker, A.K., Lawson, J.D., Brown, C.J., Williams, R.M., Romero, P., Oh, J.S., Oldfield, C.J., Campen, A.M., Ratliff, C.M., Hipps, K.W., Ausio, J., Nissen, M.S., Reeves, R., Kang, C., Kissinger, C.R., Bailey, R.W., Griswold, M.D., Chiu, W., Garner, E.C., Obradovic, Z.: Intrinsically disordered protein. J. Mol. Graph. Model. 19(1), 26–59 (2001), doi:S1093-3263(00)00138-8 [pii]

    Article  Google Scholar 

  3. Dyson, H.J., Wright, P.E.: Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell. Biol. 6(3), 197–208 (2005), doi:nrm1589, [pii] 10.1038/nrm1589

    Article  Google Scholar 

  4. Tompa, P.: Intrinsically unstructured proteins. Trends Biochem. Sci. 27(10), 527–533 (2002), doi:S0968-0004(02)02169-2 [pii]

    Article  Google Scholar 

  5. Dunker, A.K., Obradovic, Z., Romero, P., Garner, E.C., Brown, C.J.: Intrinsic protein disorder in complete genomes. In: Genome Inform. Ser. Workshop Genome Inform., vol. 11, pp. 161–171 (2000)

    Google Scholar 

  6. Meszaros, B., Simon, I., Dosztanyi, Z.: Prediction of protein binding regions in disordered proteins. PLoS Comput. Biol. 5(5), e1000376 (2009), doi:10.1371/journal.pcbi.1000376

    Article  Google Scholar 

  7. Ward, J.J., Sodhi, J.S., McGuffin, L.J., Buxton, B.F., Jones, D.T.: Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 337(3), 635–645 (2004), doi:10.1016/j.jmb.2004.02.002, S0022283604001482 [pii]

    Article  Google Scholar 

  8. Xie, H., Vucetic, S., Iakoucheva, L.M., Oldfield, C.J., Dunker, A.K., Uversky, V.N., Obradovic, Z.: Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 6(5), 1882–1898 (2007), doi:10.1021/pr060392u

    Article  Google Scholar 

  9. Tompa, P.: The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett. 579(15), 3346–3354 (2005), doi:S0014-5793(05)00424-2, [pii] 10.1016/j.febslet.2005.03.072

    Article  Google Scholar 

  10. Galea, C.A., Wang, Y., Sivakolundu, S.G., Kriwacki, R.W.: Regulation of cell division by intrinsically unstructured proteins: intrinsic flexibility, modularity, and signaling conduits. Biochemistry 47(29), 7598–7609 (2008), doi:10.1021/bi8006803

    Article  Google Scholar 

  11. Uversky, V.N., Oldfield, C.J., Dunker, A.K.: Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu. Rev. Biophys. 37, 215–246 (2008), doi:10.1146/annurev.biophys.37.032807.125924

    Article  Google Scholar 

  12. Cheng, Y., LeGall, T., Oldfield, C.J., Dunker, A.K., Uversky, V.N.: Abundance of intrinsic disorder in protein associated with cardiovascular disease. Biochemistry 45(35), 10448–10460 (2006), doi:10.1021/bi060981d

    Article  Google Scholar 

  13. Uversky, V.N.: Intrinsic disorder in proteins associated with neurodegenerative diseases. Front Biosci. 14, 5188–5238 (2009), doi:3594 [pii]

    Article  Google Scholar 

  14. Uversky, V.N., Oldfield, C.J., Midic, U., Xie, H., Xue, B., Vucetic, S., Iakoucheva, L.M., Obradovic, Z., Dunker, A.K.: Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC Genomics 10(suppl. 1), S7 (2009), doi:1471-2164-10-S1-S7, [pii] 10.1186/1471-2164-10-S1-S7

    Article  Google Scholar 

  15. Iakoucheva, L.M., Brown, C.J., Lawson, J.D., Obradovic, Z., Dunker, A.K.: Intrinsic disorder in cell-signaling and cancer-associated proteins. J. Mol. Biol. 323(3), 573–584 (2002), doi:S0022283602009695 [pii]

    Article  Google Scholar 

  16. Pajkos, M., Meszaros, B., Simon, I., Dosztanyi, Z.: Is there a biological cost of protein disorder? Analysis of cancer-associated mutations. Mol. Biosyst. 8(1), 296–307 (2012), doi:10.1039/c1mb05246b

    Article  Google Scholar 

  17. Cheng, Y., LeGall, T., Oldfield, C.J., Mueller, J.P., Van, Y.Y., Romero, P., Cortese, M.S., Uversky, V.N., Dunker, A.K.: Rational drug design via intrinsically disordered protein. Trends Biotechnol. 24(10), 435–442 (2006), doi:S0167-7799(06)00184-3, [pii] 10.1016/j.tibtech.2006.07.005

    Article  MATH  Google Scholar 

  18. Metallo, S.J.: Intrinsically disordered proteins are potential drug targets. Curr. Opin. Chem. Biol. 14(4), 481–488 (2010), doi:S1367-5931(10)00074-8, [pii] 10.1016/j.cbpa.2010.06.169

    Article  Google Scholar 

  19. Uversky, V.N.: Natively unfolded proteins: a point where biology waits for physics. Protein Sci. 11(4), 739–756 (2002), doi:10.1110/ps.4210102

    Article  Google Scholar 

  20. Dyson, H.J., Wright, P.E.: Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12(1), 54–60 (2002), doi:S0959440X02002890 [pii]

    Article  Google Scholar 

  21. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Res. 28(1), 235–242 (2000), doi:gkd090 [pii]

    Article  Google Scholar 

  22. Gunasekaran, K., Tsai, C.J., Nussinov, R.: Analysis of ordered and disordered protein complexes reveals structural features discriminating between stable and unstable monomers. J. Mol. Biol. 341(5), 1327–1341 (2004), doi:10.1016/j.jmb.2004.07.002, [pii] S0022-2836(04)00801-0

    Article  Google Scholar 

  23. Meszaros, B., Tompa, P., Simon, I., Dosztanyi, Z.: Molecular principles of the interactions of dis-ordered proteins. J. Mol. Biol. 372(2), 549–561 (2007), doi:S0022-2836(07)00920-5, [pii] 10.1016/j.jmb.2007.07.004

    Article  Google Scholar 

  24. Uversky, V.N., Oldfield, C.J., Dunker, A.K.: Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J. Mol. Recognit. 18(5), 343–384 (2005), doi:10.1002/jmr.747

    Article  Google Scholar 

  25. Dosztanyi, Z., Chen, J., Dunker, A.K., Simon, I., Tompa, P.: Disorder and sequence repeats in hub proteins and their implications for network evolution. J. Proteome Res. 5(11), 2985–2995 (2006), doi:10.1021/pr060171o

    Article  Google Scholar 

  26. Bracken, C., Iakoucheva, L.M., Romero, P.R., Dunker, A.K.: Combining prediction, computation and experiment for the characterization of protein disorder. Curr. Opin. Struct. Biol. 14(5), 570–576 (2004), doi:S0959-440X(04)00137-X, [pii] 10.1016/j.sbi.2004.08.003

    Article  Google Scholar 

  27. Garner, E., Cannon, P., Romero, P., Obradovic, Z., Dunker, A.K.: Predicting Disordered Regions from Amino Acid Sequence: Common Themes Despite Differing Structural Characterization. In: Genome Inform. Ser. Workshop Genome Inform., vol. 9, pp. 201–213 (1998)

    Google Scholar 

  28. Li, X., Romero, P., Rani, M., Dunker, A.K., Obradovic, Z.: Predicting Protein Disorder for N-, C-, and Internal Regions. In: Genome Inform. Ser. Workshop Genome Inform., vol. 10, pp. 30–40 (1999)

    Google Scholar 

  29. Radivojac, P., Obradovic, Z., Smith, D.K., Zhu, G., Vucetic, S., Brown, C.J., Lawson, J.D., Dunker, A.K.: Protein flexibility and intrinsic disorder. Protein Sci. 13(1), 71–80 (2004), doi:10.1110/ps.03128904

    Article  Google Scholar 

  30. He, B., Wang, K., Liu, Y., Xue, B., Uversky, V.N., Dunker, A.K.: Predicting intrinsic disorder in proteins: an overview. Cell Res. 19(8), 929–949 (2009), doi:cr200987, [pii] 10.1038/cr.2009.87

    Article  Google Scholar 

  31. Wootton, J.C.: Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput. Chem. 18(3), 269–285 (1994), doi:0097-8485(94)85023-2 [pii]

    Article  MATH  Google Scholar 

  32. Wootton, J.C., Federhen, S.: Analysis of compositionally biased regions in sequence databases. Methods Enzymol. 266, 554–571 (1996)

    Article  Google Scholar 

  33. Romero, P., Obradovic, Z., Li, X., Garner, E.C., Brown, C.J., Dunker, A.K.: Sequence complexity of disordered protein. Proteins 42(1), 38–48 (2001), doi:10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3 [pii]

    Article  Google Scholar 

  34. Vucetic, S., Obradovic, Z., Vacic, V., Radivojac, P., Peng, K., Iakoucheva, L.M., Cortese, M.S., Lawson, J.D., Brown, C.J., Sikes, J.G., Newton, C.D., Dunker, A.K.: DisProt: a database of protein disorder. Bioinformatics 21(1), 137–140 (2005), doi:10.1093/bioinformatics/bth476bth476 [pii]

    Article  Google Scholar 

  35. Dutta, S., Burkhardt, K., Young, J., Swaminathan, G.J., Matsuura, T., Henrick, K., Nakamura, H., Berman, H.M.: Data deposition and annotation at the worldwide protein data bank. Mol. Biotechnol. 42(1), 1–13 (2009), doi:10.1007/s12033-008-9127-7

    Article  Google Scholar 

  36. Mohan, A., Uversky, V.N., Radivojac, P.: Influence of sequence changes and environment on intrinsically disordered proteins. PLoS Comput. Biol., e1000497 (2009), doi:10.1371/journal.pcbi.1000497

    Google Scholar 

  37. De Biasio, A., Guarnaccia, C., Popovic, M., Uversky, V.N., Pintar, A., Pongor, S.: Prevalence of intrinsic disorder in the intracellular region of human single-pass type I proteins: the case of the notch ligand Delta-4. J. Proteome Res. 7(6), 2496–2506 (2008), doi:10.1021/pr800063u

    Article  Google Scholar 

  38. Uversky, V.N., Gillespie, J.R., Fink, A.L.: Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins 41(3), 415–427 (2000), doi:10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7 [pii]

    Article  Google Scholar 

  39. Galzitskaya, O.V., Garbuzynskiy, S.O., Lobanov, M.Y.: FoldUnfold: web server for the prediction of disordered regions in protein chain. Bioinformatics 22(23), 2948–2949 (2006), doi:btl504, [pii] 10.1093/bioinformatics/btl504

    Article  Google Scholar 

  40. Xie, Q., Arnold, G.E., Romero, P., Obradovic, Z., Garner, E., Dunker, A.K.: The Sequence Attribute Method for Determining Relationships Between Sequence and Protein Disorder. In: Genome Inform. Ser. Workshop Genome Inform., vol. 9, pp. 193–200 (1998)

    Google Scholar 

  41. Campen, A., Williams, R.M., Brown, C.J., Meng, J., Uversky, V.N., Dunker, A.K.: TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder. Protein Pept. Lett. 15(9), 956–963 (2008)

    Article  Google Scholar 

  42. Linding, R., Russell, R.B., Neduva, V., Gibson, T.J.: GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Res. 31(13), 3701–3708 (2003)

    Article  Google Scholar 

  43. Cheng, J., Sweredoski, M., Baldi, P.: Accurate prediction of protein disordered regions by mining protein structure. Data Mining and Klowledge Discovery 11, 213–222 (2005)

    Article  MathSciNet  Google Scholar 

  44. Su, C.T., Chen, C.Y., Hsu, C.M.: iPDA: integrated protein disorder analyzer. Nucleic Acids Res. 35(Web Server Issue), W465–W472 (2007), doi:gkm353, [pii] 10.1093/nar/gkm353

    Article  Google Scholar 

  45. Fuxreiter, M., Simon, I., Friedrich, P., Tompa, P.: Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J. Mol. Biol. 338(5), 1015–1026 (2004), doi:10.1016/j.jmb.2004.03.017, [pii] S0022283604003079

    Article  Google Scholar 

  46. Suveges, D., Gaspari, Z., Toth, G., Nyitray, L.: Charged single alpha-helix: a versatile protein structural motif. Proteins 74(4), 905–916 (2009), doi:10.1002/prot.22183

    Article  Google Scholar 

  47. Brown, C.J., Takayama, S., Campen, A.M., Vise, P., Marshall, T.W., Oldfield, C.J., Williams, C.J., Dunker, A.K.: Evolutionary rate heterogeneity in proteins with long disordered regions. J. Mol. Evol. 55(1), 104–110 (2002), doi:10.1007/s00239-001-2309-6

    Article  Google Scholar 

  48. Daughdrill, G.W., Narayanaswami, P., Gilmore, S.H., Belczyk, A., Brown, C.J.: Dynamic behavior of an intrinsically unstructured linker domain is conserved in the face of negligible amino acid sequence conservation. J. Mol. Evol. 65(3), 277–288 (2007), doi:10.1007/s00239-007-9011-2

    Article  Google Scholar 

  49. Peng, K., Radivojac, P., Vucetic, S., Dunker, A.K., Obradovic, Z.: Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7, 208 (2006), doi:1471-2105-7-208, [pii] 10.1186/1471-2105-7-208

    Article  Google Scholar 

  50. Melamud, E., Moult, J.: Evaluation of disorder predictions in CASP5. Proteins 53(suppl. 6), 561–565 (2003), doi:10.1002/prot.10533

    Article  Google Scholar 

  51. Jin, Y., Dunbrack Jr., R.L.: Assessment of disorder predictions in CASP6. Proteins 61(suppl. 7), 167–175 (2005), doi:10.1002/prot.20734

    Article  Google Scholar 

  52. Bordoli, L., Kiefer, F., Schwede, T.: Assessment of disorder predictions in CASP7. Proteins 69(suppl. 8), 129–136 (2007), doi:10.1002/prot.21671

    Article  Google Scholar 

  53. Noivirt-Brik, O., Prilusky, J., Sussman, J.L.: Assessment of disorder predictions in CASP8. Proteins 77(suppl. 9), 210–216 (2009), doi:10.1002/prot.22586

    Article  Google Scholar 

  54. Monastyrskyy, B., Fidelis, K., Moult, J., Tramontano, A., Kryshtafovych, A.: Evaluation of disorder predictions in CASP9. Proteins 79(suppl. 10), 107–118 (2011), doi:10.1002/prot.23161

    Article  Google Scholar 

  55. Dosztanyi, Z., Sandor, M., Tompa, P., Simon, I.: Prediction of protein disorder at the domain level. Curr. Protein Pept. Sci. 8(2), 161–171 (2007)

    Article  Google Scholar 

  56. Schlessinger, A., Punta, M., Yachdav, G., Kajan, L., Rost, B.: Improved disorder prediction by combination of orthogonal approaches. PLoS One 4(2), e4433 (2009), doi:10.1371/journal.pone.0004433

    Article  Google Scholar 

  57. Hirose, S., Shimizu, K., Kanai, S., Kuroda, Y., Noguchi, T.: POODLE-L: a two-level SVM prediction system for reliably predicting long disordered regions. Bioinformatics 23(16), 2046–2053 (2007), doi:btm302, [pii] 10.1093/bioinformatics/btm302

    Article  Google Scholar 

  58. Dosztanyi, Z., Meszaros, B., Simon, I.: Bioinformatical approaches to characterize intrinsically disordered/unstructured proteins. Brief Bioinform. 11(2), 225–243 (2010), doi:bbp061, [pii] 10.1093/bib/bbp061

    Article  Google Scholar 

  59. Romero, Obradovic, Dunker, K.: Sequence Data Analysis for Long Disordered Regions Prediction in the Calcineurin Family. In: Genome Inform. Ser. Workshop Genome Inform., vol. 8, pp. 110–124 (1997)

    Google Scholar 

  60. Oldfield, C.J., Cheng, Y., Cortese, M.S., Romero, P., Uversky, V.N., Dunker, A.K.: Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44(37), 12454–12470 (2005), doi:10.1021/bi050736e

    Article  Google Scholar 

  61. Cheng, Y., Oldfield, C.J., Meng, J., Romero, P., Uversky, V.N., Dunker, A.K.: Mining alpha-helix-forming molecular recognition features with cross species sequence alignments. Biochemistry 46(47), 13468–13477 (2007), doi:10.1021/bi7012273

    Article  Google Scholar 

  62. Radivojac, P., Obradovic, Z., Brown, C.J., Dunker, A.K.: Prediction of boundaries between intrinsically ordered and disordered protein regions. In: Pac. Symp. Biocomput., pp. 216–227 (2003)

    Google Scholar 

  63. Linding, R., Jensen, L.J., Diella, F., Bork, P., Gibson, T.J., Russell, R.B.: Protein disorder prediction: implications for structural proteomics. Structure 11(11), 1453–1459 (2003), doi:S0969212603002351 [pii]

    Article  Google Scholar 

  64. Su, C.T., Chen, C.Y., Ou, Y.Y.: Protein disorder prediction by condensed PSSM considering propensity for order or disorder. BMC Bioinformatics 7, 319 (2006), doi:1471-2105-7-319, [pii] 10.1186/1471-2105-7-319

    Article  Google Scholar 

  65. Schaffer, A.A., Aravind, L., Madden, T.L., Shavirin, S., Spouge, J.L., Wolf, Y.I., Koonin, E.V., Altschul, S.F.: Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res. 29(14), 2994–3005 (2001)

    Article  Google Scholar 

  66. Ishida, T., Kinoshita, K.: PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res. 35(Web Server Issue), W460–W464 (2007), doi:gkm363, [pii] 10.1093/nar/gkm363

    Article  Google Scholar 

  67. Wang, L., Sauer, U.H.: OnD-CRF: predicting order and disorder in proteins using [corrected] conditional random fields. Bioinformatics 24(11), 1401–1402 (2008), doi:btn132, [pii] 10.1093/bioinformatics/btn132

    Article  Google Scholar 

  68. MacCallum, R.: http://www.sbc.su.se/~maccallr/disorder/ (date last accessed July 3, 2012 )

  69. Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P., Dunker, A.K.: Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins 61(suppl. 7), 176–182 (2005), doi:10.1002/prot.20735

    Article  Google Scholar 

  70. Hirose, S., Shimizu, K., Inoue, N., Kanai, S., Noguchi, T.: Disordered region prediction by integrating POODLE series. In: CASP8 Proceedings 2008, pp. 14–15 (2008)

    Google Scholar 

  71. Bujnicki, J.M., Elofsson, A., Fischer, D., Rychlewski, L.: LiveBench-2: large-scale automated evaluation of protein structure prediction servers. Proteins (suppl. 5), 184–191 (2001), doi:10.1002/prot.10039 [pii]

    Google Scholar 

  72. Yang, Z.R., Thomson, R., McNeil, P., Esnouf, R.M.: RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21(16), 3369–3376 (2005), doi:bti534, [pii] 10.1093/bioinformatics/bti534

    Article  Google Scholar 

  73. Dosztanyi, Z., Csizmok, V., Tompa, P., Simon, I.: The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J. Mol. Biol. 347(4), 827–839 (2005), doi:S0022-2836(05)00129-4, [pii] 10.1016/j.jmb.2005.01.071

    Article  Google Scholar 

  74. Prilusky, J., Felder, C.E., Zeev-Ben-Mordehai, T., Rydberg, E.H., Man, O., Beckmann, J.S., Silman, I., Suss-man, J.L.: FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically un-folded. Bioinformatics 21(16), 3435–3438 (2005), doi:bti537, [pii] 10.1093/bioinformatics/bti537

    Article  Google Scholar 

  75. Thomas, P.D., Dill, K.A.: An iterative method for extracting energy-like quantities from protein structures. Proc. Natl. Acad. Sci. U S A 93(21), 11628–11633 (1996)

    Article  Google Scholar 

  76. Shortle, D.: Propensities, probabilities, and the Boltzmann hypothesis. Protein Sci. 12(6), 1298–1302 (2003), doi:10.1110/ps.0306903

    Article  Google Scholar 

  77. Dosztanyi, Z., Csizmok, V., Tompa, P., Simon, I.: IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16), 3433–3434 (2005), doi:bti541, [pii] 10.1093/bioinformatics/bti541

    Article  Google Scholar 

  78. Dosztanyi, Z., Meszaros, B., Simon, I.: ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 25(20), 2745–2746 (2009), doi:btp518, [pii] 10.1093/bioinformatics/btp518

    Article  Google Scholar 

  79. Diella, F., Haslam, N., Chica, C., Budd, A., Michael, S., Brown, N.P., Trave, G., Gibson, T.J.: Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front Biosci. 13, 6580–6603 (2008), doi:3175 [pii]

    Article  Google Scholar 

  80. Sigrist, C.J., Cerutti, L., Hulo, N., Gattiker, A., Falquet, L., Pagni, M., Bairoch, A., Bucher, P.: PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform. 3(3), 265–274 (2002)

    Article  Google Scholar 

  81. Neduva, V., Russell, R.B.: Linear motifs: evolutionary interaction switches. FEBS Lett. 579(15), 3342–3345 (2005), doi:S0014-5793(05)00461-8, [pii] 10.1016/j.febslet.2005.04.005

    Article  Google Scholar 

  82. Stein, A., Aloy, P.: Contextual specificity in peptide-mediated protein interactions. PLoS One 3(7), e2524 (2008), doi:10.1371/journal.pone.0002524

    Article  Google Scholar 

  83. Dinkel, H., Michael, S., Weatheritt, R.J., Davey, N.E., Van Roey, K., Altenberg, B., Toedt, G., Uyar, B., Seiler, M., Budd, A., Jodicke, L., Dammert, M.A., Schroeter, C., Hammer, M., Schmidt, T., Jehl, P., McGuigan, C., Dymecka, M., Chica, C., Luck, K., Via, A., Chatr-Aryamontri, A., Haslam, N., Grebnev, G., Edwards, R.J., Steinmetz, M.O., Meiselbach, H., Diella, F., Gibson, T.J.: ELM–the database of eukaryotic linear motifs. Nucleic Acids Res. 40(Database Issue), D242–D251 (2012), doi:gkr1064, [pii] 10.1093/nar/gkr1064

    Article  Google Scholar 

  84. Davey, N.E., Trave, G., Gibson, T.J.: How viruses hijack cell regulation. Trends Biochem. Sci. 36(3), 159–169 (2011), doi:S0968-0004(10)00200-8, [pii] 10.1016/j.tibs.2010.10.002

    Article  Google Scholar 

  85. Davey, N.E., Edwards, R.J., Shields, D.C.: Estimation and efficient computation of the true probability of recurrence of short linear protein sequence motifs in unrelated proteins. BMC Bioinformatics 11, 14 (2010), doi:1471-2105-11-14, [pii] 10.1186/1471-2105-11-14

    Article  Google Scholar 

  86. Gibson, T.J.: Cell regulation: determined to signal discrete cooperation. Trends Biochem. Sci. 34(10), 471–482 (2009), doi:S0968-0004(09)00142-X, [pii] 10.1016/j.tibs.2009.06.007

    Article  MathSciNet  Google Scholar 

  87. Stein, A., Pache, R.A., Bernado, P., Pons, M., Aloy, P.: Dynamic interactions of proteins in complex networks: a more structured view. FEBS J. 276(19), 5390–5405 (2009), doi:EJB7251, [pii] 10.1111/j.1742-4658.2009.07251.x

    Article  Google Scholar 

  88. Weatheritt, R.J., Luck, K., Petsalaki, E., Davey, N.E., Gibson, T.J.: The identification of short linear motif-mediated interfaces within the human interactome. Bioinformatics 28(7), 976–982 (2012), doi:bts072, [pii] 10.1093/bioinformatics/bts072

    Article  Google Scholar 

  89. Lupas, A., Van Dyke, M., Stock, J.: Predicting coiled coils from protein sequences. Science 252(5009), 1162–1164 (1991), doi:252/5009/1162, [pii] 10.1126/science.252.5009.1162

    Article  Google Scholar 

  90. Jones, D.T.: Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292(2), 195–202 (1999), doi:10.1006/jmbi.1999.3091, [pii] S0022-2836(99)93091-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bálint Mészáros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mészáros, B., Dosztányi, Z., Magyar, C., Simon, I. (2014). Bioinformatical Approaches to Unstructured/Disordered Proteins and Their Interactions. In: Liwo, A. (eds) Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes. Springer Series in Bio-/Neuroinformatics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28554-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28554-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28553-0

  • Online ISBN: 978-3-642-28554-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics