Skip to main content

Part of the book series: Springer Series in Bio-/Neuroinformatics ((SSBN,volume 1))

Abstract

The directions of the largest thermal fluctuations of the structure of a protein in its native state are the directions of its low-frequency modes (below 1 THZ), named acoustical modes by analogy with the acoustical phonons of a material. The acoustical modes of a protein assist its conformational changes and are related to its biological functions. Low-frequency modes are difficult to detect experimentally. A survey of experimental data of low-frequency modes of proteins is presented. Theoretical approaches, based on normal mode analysis, are of first interest to understand the role of the low-frequency modes in proteins. In this chapter, the fundamentals of normal mode analysis using all-atom models and coarse-grained elastic models are reviewed. They are applied to proteins intimately related to human diseases: ubiquitin and the 70kDa Heat-Shock Protein (Hsp70). The ubiquitin protein is a single domain protein which is a benchmark for biomolecular Nuclear Magnetic Resonance spectroscopy. Present all-atom calculations predict a “boson peak” near 20 cm− 1 in the inelastic neutron scattering spectra of this protein. The molecular chaperone Hsp70 is an exemplary model to illustrate the different properties of the low-frequency modes of a multi-domain protein, which occurs in two well distinct structural states (open and closed states). The role of the low-frequency modes in the transition between the two states of Hsp70 is analyzed in detail. It is shown that the low-frequency modes provide an easy means of communication between protein domains separated by a large distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benedek, G., Ellis, J., Reichmuth, A., Ruggerone, P., Schief, H., Toennies, J.P.: Organ-pipe modes of sodium epitaxial multilayers on Cu(001) observed by inelastic Helium-atom scattering. Phys. Rev. Lett. 69, 2951–2954 (1992)

    Google Scholar 

  2. Senet, P., Lambin, P., Lucas, A.A.: Standing-wave optical phonons confined in ultrathin overlayers of ionic materials. Phys. Rev. Lett. 74, 570–573 (1995)

    Google Scholar 

  3. de Gennes, P.G., Papoular, M.: Polarisation, matière et rayonnement. In: Volume in Honor of Alfred Kastler, Presse Univ Fr, Paris (1969)

    Google Scholar 

  4. Gō, N.: Shape of the conformational energy surface near the global minimum and low-frequency vibrations in the native conformation of globular proteins. Biopolymers 17, 1373–1379 (1977)

    Google Scholar 

  5. Petitcolas, W.L., Dowley, M.W.: Acoustical phonon spectra of biological polymers. Nature 212, 400–401 (1966)

    Google Scholar 

  6. Keskin, O., Jernigan, R.L., Bahar, I.: Proteins with similar architecture exhibit similar large-scale dynamic behavior. Biophys. J. 78, 2093–2106 (2000)

    Google Scholar 

  7. Atilgan, A.R., Durell, S.R., Jernigan, R.L., Demirel, M.C., Keskin, O., Bahar, I.: Anisotropy of fluctuation dynamics of proteins with an elastic network. Biophys. J. 80, 505–515 (2001)

    Google Scholar 

  8. Lamb, H.: On the vibration of an elastic sphere. Proc. London Math. Soc. 13, 189–212 (1881)

    MathSciNet  Google Scholar 

  9. Koizumi, H., Tachibana, M., Kojima, K.: Elastic constants in tetragonal hen egg-white lysozyme crystals containing large amount of water. Phys. Rev. E 79, 061917 (2009)

    Google Scholar 

  10. Bellissent-Funel, M.-C., Teixeira, J., Chen, S.H., Dorner, B., Middendorf, H.D., Crespi, H.L.: Low-frequency collective mode in dry and hydrated proteins. Biophys. J. 56, 713–716 (1989)

    Google Scholar 

  11. Edwards, C., Palmer, S.B., Emsley, P., Helliwell, J.R., Glover, I.D., Harris, G.W., Moss, D.S.: Thermal motion in protein crystals estimated using laser-generated ultrasound and Young’s modulus measurements. Acta. Cryst. A 46, 315–320 (1990)

    Google Scholar 

  12. Tachibana, M., Kojima, K., Ikuyama, R., Kobayashi, Y., Ataka, M.: Sound velocity and dynamic elastic constants of lysozyme single crystals. Chem. Phys. Lett. 332, 259–264 (2000)

    Google Scholar 

  13. McCammon, J.A., Gelin, B.R., Karplus, M.: The hinge-bending mode in lysozyme. Nature 262, 325–326 (1976)

    Google Scholar 

  14. Gō, N., Noguti, T., Nishikawa, T.: Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc. Natl. Acad. Sci. USA 80, 3696–3700 (1983)

    Google Scholar 

  15. Brooks, B., Karplus, M.: Harmonic dynamics of proteins: normal mode and fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. USA 80, 6571–6575 (1983)

    Google Scholar 

  16. Levitt, M., Sander, C., Stern, P.S.: Protein normal mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J. Mol. Biol. 181, 423–447 (1985)

    Google Scholar 

  17. Brooks, B., Karplus, M.: Normal modes for specific motions of macromolecules: application to hinge-bending mode of lysozyme. Proc. Natl. Acad. Sci. USA 82, 4995–4999 (1985)

    Google Scholar 

  18. Dykeman, E.C., Sankey, O.F.: Normal mode analysis and applications in biological physics. J. Phys. Condens Matter 22, 423202 (2010)

    Google Scholar 

  19. Hayward, S., Berendsen, H.J.C.: Systematic analysis of domain motions in proteins from conformational change: New results on citratesynthase and T4 lysozyme. Proteins 30, 144–154 (1998)

    Google Scholar 

  20. Gerstein, M., Lesk, A.M., Chothia, C.: Structural mechanisms for domain movements in proteins. Biochem. 33, 6739–6748 (1994)

    Google Scholar 

  21. Gerstein, M., Krebs, W.A.: A database of macromolecular motions. Nucleic Acids Res. 26, 4280–4290 (1998)

    Google Scholar 

  22. Gō, M., Gō, N.: Fluctuations of alpha-helix. Biopolymers 15, 1119–1127 (1976)

    Google Scholar 

  23. Gō, N., Scheraga, H.A.: Analysis of the contribution of internal vibrations to the statistical weights of equilibrium conformations of macromolecules. J. Chem. Phys. 51, 4751–4767 (1969)

    Google Scholar 

  24. Cui, Q., Li, G., Ma, J., Karplus, M.: A normal mode analysis of structural plasticity in the biomolecular motor F1-ATPase. J. Mol. Biol. 340, 345–372 (2004)

    Google Scholar 

  25. Gaillard, T., Dejaegere, A., Stote, R.H.: Dynamics of beta3 integrin I-like and hybrid domains: insight from simulations on the mechanism of transition between open and closed forms. Proteins 76, 977–994 (2009)

    Google Scholar 

  26. McCammon, J.A.: Protein Dynamics. Rep. Prog. Phys. 47, 1–46 (1984)

    Google Scholar 

  27. Bennett, W.S., Huber, R.: Structural and functional aspects of domain motions in proteins. CRCCR Rev. Bioch. Mol. 15, 291–384 (1984)

    Google Scholar 

  28. Karplus, M., Petsko, G.A.: Molecular dynamics simulation in biology. Nature 347, 631–639 (1990)

    Google Scholar 

  29. Berendsen, H.J.C., Hayward, S.: Collective protein dynamics in relation to function. Curr. Opin. Struct. Biol. 10, 165–169 (2000)

    Google Scholar 

  30. Tama, F., Sanejouand, Y.H.: Conformational change of proteins arising from normal mode calculations. Protein Eng. 14, 1–6 (2001)

    Google Scholar 

  31. Rod, T.H., Radkiewicz, J.L., Brooks, C.L.: Correlated motion and effect of distal mutations in dihydrofolate reductase. Proc. Natl. Acad. Sci. USA 100, 6980–6985 (2003)

    Google Scholar 

  32. Tobi, D., Bahar, I.: Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. Proc. Natl. Acad. Sci. USA 102, 18908–18913 (2005)

    Google Scholar 

  33. Dobbins, S.E., Lesk, V.I., Sternberg, M.J.E.: Insights into protein flexibility: the relationship between normal modes and conformational change upon protein-protein docking. Proc. Natl. Acad. Sci. USA 105, 10390–10395 (2008)

    Google Scholar 

  34. Bakan, A., Bahar, I.: The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induces upon inhibitor binding. Proc. Natl. Acad. Sci. USA 106, 14349–14354 (2009)

    Google Scholar 

  35. Benkovic, S.J., Hammes-Schiffer, S.: Enzyme motions inside and out. Science 312, 208–209 (2006)

    Google Scholar 

  36. Nashine, V.C., Hammes-Schiffer, S., Benkovic, S.J.: Coupled motions in enzyme catalysis. Curr. Opin. Chem. Biol. 14, 644–651 (2010)

    Google Scholar 

  37. Henzler-Wildman, K., Kern, D.: Dynamic personalities of proteins. Nature 450, 964–971 (2007)

    Google Scholar 

  38. Zwier, M.C., Chong, L.T.: Reaching biological timescales with all-atom molecular dynamics simulations. Curr. Opin. Pharm. 10, 745–752 (2010)

    Google Scholar 

  39. Nicolaï, A., Senet, P., Delarue, P., Ripoll, D.R.: Human Inducible Hsp70: Structures, Dynamics, and Interdomain Communication from All-Atom Molecular Dynamics Simulations. J. Chem. Theory Comput. 6, 2501–2519 (2010)

    Google Scholar 

  40. Nicolaï, A., Senet, P., Delarue, P.: Conformational dynamics of full-length inducible human Hsp70 derived from microsecond molecular dynamics simulations in explicit solvent. J. Biomol. Struct. Dyn (2012) (in press)

    Google Scholar 

  41. Noguti, T., Gō, N.: Structural basis of hierarchical multiple substates of a protein. IV: rearrangements in atom packing and local determinations. Proteins 5, 125–131 (1989)

    Google Scholar 

  42. Hayward, S., Kitao, A., Gō, N.: Harmonicity and anharmonicity in protein dynamics: a normal mode analysis and principal component analysis. Proteins 23, 177–186 (1995)

    Google Scholar 

  43. Ma, J., Karplus, M.: Ligand-induced conformational changes in ras p21, a normal mode and energy minimization analysis. J. Mol. Biol. 274, 114–131 (1997)

    Google Scholar 

  44. Ma, J., Karplus, M.: The allosteric mechanism of the chaperone GroEL: a dynamic analysis. Proc. Natl. Acad. Sci. USA 95, 8502–8507 (1998)

    Google Scholar 

  45. Gaillard, T., Martin, E., San Sebastian, E., Cossio, F.P., Lopez, X., Dejaegere, A., Stote, R.H.: Comparative normal mode analysis of LFA-1 integrin I-domains. J. Mol. Biol. 374, 231–249 (2007)

    Google Scholar 

  46. Cecchini, M., Houdusse, A., Karplus, M.: Allosteric Communication in Myosin V: From Small Conformational Changes to Large Directed Movements. PLoS Comput. Biol. 4(8), e1000129 (2008)

    MathSciNet  Google Scholar 

  47. Durand, P., Trinquier, G., Sanejouand, Y.: New approach for determining low-frequency normal modes in macromolecules. Biopolymers 34, 759–771 (1994)

    Google Scholar 

  48. Tama, F., Gadea, F.X., Marques, O., Sanejouand, Y.H.: Building-block approach for determining low-frequency normal modes of macromolecules. Proteins 41, 1–7 (2000)

    Google Scholar 

  49. Tirion, M.M.: Low-amplitude elastic motions in proteins from a single-parameter atomic analysis. Phys. Rev. Lett. 77, 1905–1908 (1996)

    Google Scholar 

  50. Hinsen, K.: Analysis of domain motions by approximate normal mode calculations. Proteins 33, 417–429 (1998)

    Google Scholar 

  51. Bahar, I., Atilgan, A.R., Erman, B.: Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Folding and Design 2, 173–181 (1997)

    Google Scholar 

  52. Navizet, I., Lavery, R., Jernigan, R.L.: Myosin flexibility: structural domains and collective vibrations. Proteins 54, 384–393 (2004)

    Google Scholar 

  53. Bahar, I., Rader, A.J.: Coarse-grained normal mode analysis in structural biology. Curr. Opin. Struct. Biol. 15, 586–592 (2005)

    Google Scholar 

  54. Yang, L., Song, G., Jernigan, R.L.: How well we can understand large-scale protein motions using normal modes of elastic network model. Biophys. J. 83, 1620–1630 (2007)

    Google Scholar 

  55. Born, M., Huang, K.: Dynamical theory of crystal lattice. In: Texts in the Physical Sciences, Oxford Classic (1998)

    Google Scholar 

  56. Frauenfelder, H.F., Parak, F., Young, R.D.: Conformational substates in proteins. Annu. Rev. Biophys. Chem. 17, 451–479 (1988)

    Google Scholar 

  57. Senet, P., Maisuradze, G.G., Foulie, C., Delarue, P., Scheraga, H.A.: How main-chain of proteins explore the free-energy landscape in native states. Proc. Natl. Acad. Sci. USA 105, 19708–19713 (2008)

    Google Scholar 

  58. Cote, Y., Senet, P., Delarue, P., Maisuradze, G.G., Scheraga, H.A.: Anomalous diffusion and dynamical correlation between the side chains and the main chain of proteins in their native states. Proc. Natl. Acad. Sci. USA 109, 10346–10351 (2012)

    Google Scholar 

  59. Cote, Y., Senet, P., Delarue, P., Maisuradze, G.G., Scheraga, H.A.: Nonexponential decay of internal rotation correlation functions of native proteins and self-similar structural fluctuations. Proc. Natl. Acad. Sci. USA 107, 19844–19849 (2010)

    Google Scholar 

  60. Kitao, A., Hayward, S., Go, N.: Energy-landscape of a native protein: jumping-among-minima model. Proteins 33, 496–517 (1998)

    Google Scholar 

  61. Wales, D.: Energy landscapes. Cambridge University press (2003)

    Google Scholar 

  62. Kitao, A., Go, N.: Investigating protein dynamics in collective coordinate space. Curr. Opin. Struct. Biol. 9, 164–169 (1999)

    Google Scholar 

  63. Vinh, N.Q., Allen, S.J., Plaxco, K.W.: Dielectric spectroscopy of proteins as a quantitative experimental test of computational models of their low-frequency harmonic motions. J. Am. Chem. Soc. 133, 8942–8947 (2011)

    Google Scholar 

  64. Middendorf, H.D.: Biophysical applications of quasi-elastic and inelastic neutron scattering. Ann. Rev. Biophys. Bioeng. 13, 425–451 (1984)

    Google Scholar 

  65. Middendorf, H.D., Hayward, R.L., Parker, S.F., Bradshaw, J., Miller, A.: Vibrational neutron spectroscopy of collagen and model polypeptides. Biophys. J. 69, 660–673 (1995)

    Google Scholar 

  66. Harney, T., James, D., Miller, A., White, J.W.: Phonons and the elastic moduli of collagen and muscle. Nature 267, 285–287 (1977)

    Google Scholar 

  67. Cusak, S., Doster, W.: Temperature dependence of the low-frequency dynamics of myoglobin. Measurement of the vibrational frequency distribution by inelastic neutron scattering. Biophys. J. 58, 243–251 (1990)

    Google Scholar 

  68. Berney, C.V., Renugopalakrishnan, V., Bhatnagar, R.S.: Collagen. An inelastic neutron-scattering study of low-frequency vibrational modes. Biophys. J. 52, 343–345 (1987)

    Google Scholar 

  69. Bartunik, H.D.: Intramolecular low-frequency vibrations in lysozyme by Neutron time-of-flight spectroscopy. Biopolymers 21, 43–50 (1982)

    Google Scholar 

  70. Middendorf, H.D.: Neutron studies of the dynamics of globular proteins. Physica. B 182, 415–420 (1992)

    Google Scholar 

  71. Diehl, M., Doster, W., Petry, W., Schober, H.: Water-coupled low-frequency modes of myoglobin and lysozyme observed by inelastic neutron scattering. Biophys. J. 73, 2726–2732 (1997)

    Google Scholar 

  72. Lushnikov, S.G., Svaindze, A.V., Sashin, I.L.: Vibrational density of states of hen egg white lysozyme. JETP Letters 82, 31–35 (2005)

    Google Scholar 

  73. Paciaroni, A., Orecchini, A., Haertlein, M., et al.: Vibrational collective dynamics of dry proteins in the terahertz region. J. Phys. Chem. B 116, 3861–3865 (2012)

    Google Scholar 

  74. Brown, K.G., Erfurth, S.C., Small, E.W., Petitcolas, W.L.: Conformationally dependent low-frequency motions of proteins by laser Raman spectroscopy. Proc. Natl. Acad. Sci. USA 69, 1467–1469 (1972)

    Google Scholar 

  75. Genzel, L., Keilmann, F., Martin, T.P., Winterling, G., Yacoby, Y., Fröhlich, H., Makinen, M.W.: Low-frequency Raman spectra of lysozyme. Biopolymers 15, 219–225 (1976)

    Google Scholar 

  76. Painter, P.C., Mosher, L.E., Rhoads, C.: Low-frequency modes in Raman spectra of proteins. Biolpolymers 21, 1469–1472 (1982)

    Google Scholar 

  77. Urabe, H., Sugawara, Y., Ataka, M., Rupprecht, A.: Low-frequency Raman spectra of lysozyme crystals and oriented DNA films: dynamics of crystal water. Biophys. J. 74, 1533–1540 (1998)

    Google Scholar 

  78. Hédoux, A., Ionov, R., Willart, J.F., et al.: Evidence of a two-stage thermal denaturation process in lysozyme: a Raman scaterring and differential scanning calorimetry investigation. J. Chem. Phys. 124, 14703 (2006)

    Google Scholar 

  79. Crupi, C., D’Angelo, G., Wanderlingh, U., Vasi, C.: Raman spectroscopic and low-temperature calorimetric investigation of the low-energy vibrational dynamics of hen egg-lysozyme. Philosophical Mag. 91, 1956–1965 (2011)

    Google Scholar 

  80. Sassi, P., Perticaroli, S., Comez, L., Lupi, L., Paolantoni, M., Fioretto, D., Morresi, A.: Reversible and irreversible denaturation processes in globular proteins: from collective to molecular spectroscopic analysis. J. Raman spectrosc 43, 273–279 (2012)

    Google Scholar 

  81. Shuker, R., Gamon, R.W.: Raman-scattering selection rule breaking and the density of states in amorphous materials. Phys. Rev. Lett. 25, 222–225 (1970)

    Google Scholar 

  82. Zorn, R.: The boson peak demystified? Physics 4, 44 (2011)

    Google Scholar 

  83. Chumakov, A.I., Monaco, G., Crichton, W.A., et al.: Equivalence of the boson peak in glasses to the transverse acoustic van Hove singularity in crystals. Phys. Rev. Lett. 106, 225501 (2011)

    Google Scholar 

  84. Leyser, H., Doster, W., Diehl, M.: Far-infrared emission by Boson peak vibrations in a globular protein. Phys. Rev. Lett. 82, 2987–2989 (1999)

    Google Scholar 

  85. Tarek, M., Tobias, D.J.: Effects of solvent packing on side chain and backbone contributions to the protein boson peak. J. Chem. Phys. 115, 1607–1612 (2001)

    Google Scholar 

  86. Doster, W., Cusak, S., Petry, W.: Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337, 754–756 (1989)

    Google Scholar 

  87. McCammon, J.A., Karplus, M., Gelin, B.R.: Dynamics of folded proteins. Nature 267, 585–590 (1977)

    Google Scholar 

  88. Moeller, K.D., Williams, G.P., Steinhauser, S., Hirschmugl, C., Smith, J.C.: Hydration-dependent far-infrared absorption in lysozyme detected using synchrotron radiation. Biophys. J. 61, 276–280 (1992)

    Google Scholar 

  89. Das, G.: Principal component analysis based methodology to distinguish protein SERS spectra. J. Mol. Struct. 993, 500–505 (2011)

    Google Scholar 

  90. De Angelis, F., Gentile, F., Mecarini, F., et al.: Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nature Photonics 5, 682 (2012)

    Google Scholar 

  91. Oladepo, S.A., Xiong, K., Hong, Z.M., Asher, S.A., Handen, J., Lednev, I.K.: UV resonance Raman investigations of peptide and protein structure dynamics. Chem. Rev. 112, 2604–2628 (2012)

    Google Scholar 

  92. Li, H., Nafie, L.A.: Simultaneous acquisition of all four forms of circular polarization Raman optical activity: results for α-pinene and lysozyme. J. Raman Spectrosc 43, 89–94 (2012)

    Google Scholar 

  93. Hochstrasser, M.: Origin and function of Ubiquitin-like proteins. Nature 458, 422–429 (2009)

    Google Scholar 

  94. Kerscher, O., Felberbaum, R., Hochstrasser, M.: Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006)

    Google Scholar 

  95. Winget, J.M., Mayor, T.: The diversity of ubiquitin recognition: hot spots and varied specificity. Molecular Cell 38, 627–635 (2010)

    Google Scholar 

  96. Hoeller, D., Dikic, I.: Targeting the ubiquitin system in cancer therapy. Nature 458, 438–444 (2009)

    Google Scholar 

  97. Lindorff-Larsen, K., Best, R.B., DePristo, M.A., Dobson, C.M., Vendruscolo, M.: Simultaneous determination of protein structure and dynamics. Nature 433, 128–132 (2005)

    Google Scholar 

  98. Vijay-Kumar, S., Bugg, C.E., Cook, W.J.: Structure of Ubiquitin refined at 1.8 A resolution. J. Mol. Biol. 194, 531–544 (1987)

    Google Scholar 

  99. Lindahl, E., Hess, B., van der Spoel, D.: Gromacs 3.0: A package fro molecular simulation and trajectory analysis. J. Mol. Mod 7, 306–317 (2001)

    Google Scholar 

  100. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 4, 435–447 (2008)

    Google Scholar 

  101. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Hermans, J.: Interaction models for water in relation to protein hydration. D. Reidel (1981)

    Google Scholar 

  102. Scott, W.R.P., Hünenberger, P.H., Tironi, I.G., et al.: The GROMOS Biomolecular Simulation Program Package. J. Phys. Chem. A. 103, 3596–3607 (1999)

    Google Scholar 

  103. Hartl, F.U., Hayer-Hartl, M.: Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002)

    Google Scholar 

  104. Bukau, B., Deuerling, E., Pfund, C., Craig, E.A.: Getting newly synthesized proteins into shape. Cell 101, 119–122 (2000)

    Google Scholar 

  105. Young, J.C., Agashe, V.R., Siegers, K., Hartl, F.U.: Pathways of chaperone-mediated protein folding in the cytosol. Nat. Rev. Mol. Cell Biol. 5, 781–791 (2004)

    Google Scholar 

  106. Saibil, H.R.: Chaperones machines in action. Curr. Opin. Struc. Biol. 18, 35–42 (2008)

    Google Scholar 

  107. Selkoe, D.J.: Folding proteins in fatal ways. Nature 426, 900–904 (2003)

    Google Scholar 

  108. Garrido, C., Brunet, M., Didelot, C., Zermati, Y., Schmitt, E., Kroemer, G.: Heat shock proteins 27 and 70: anti-apoptic proteins with tumorigenic properties. Cell Cycle 5, 2592–2601 (2006)

    Google Scholar 

  109. Buchburger, A., Theyssen, H., Schröder, H., et al.: Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication. J. Biol. Chem. 270, 16903–16910 (1995)

    Google Scholar 

  110. Brehmer, D., Rudiger, S., Gassler, C.S., et al.: Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nature 8, 427–432 (2001)

    Google Scholar 

  111. Liu, Q., Hendrickson, W.A.: Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131, 106–120 (2007)

    Google Scholar 

  112. Polier, S., Dragovic, Z., Hartl, F.U., Bracher, A.: Structural Basis for the Cooperation of Hsp70 and Hsp110 Chaperones in Protein Folding. Cell 131, 106–120 (2008)

    Google Scholar 

  113. Schuermann, P.J., Jiang, J.W., Cuellar, J., et al.: Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol. Cell. 31, 232–243 (2008)

    Google Scholar 

  114. Wilbanks, S.M., Chen, L., Tsuruta, H., Hodgson, K.O., McKay, D.B.: Solution small-angle X-ray scattering study of the molecular chaperone Hsc70 and its subfragments. Biochem. 34, 12095–12106 (1995)

    Google Scholar 

  115. Shi, L., Kataka, M., Fink, A.L.: Conformational characterization of DnaK and its complexes by small-angle X-ray scattering. Biochem. 35, 3297–3308 (1996)

    Google Scholar 

  116. Bertelsen, E.B., Chang, L., Gestwicki, J.E., Zuiderweg, E.R.P.: Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc. Natl. Acad. Sci. USA 106, 8471–8476 (2009)

    Google Scholar 

  117. Golas, E., Maisuradze, G.G., Senet, P., Oldziej, S., Czaplewski, C., Scheraga, H.A., Liwo, A.: Simulation of the opening and closing of Hsp70 chaperones by coarse-grained molecular dynamics. J. Chem. Theory Comput. 8, 1750–1764 (2012)

    Google Scholar 

  118. Ben-Avraham, D.: Vibrational normal-mode spectrum of globular proteins. Phys. Rev. B 47, 14559–14560 (1993)

    Google Scholar 

  119. Svanidze, A.V., Sashin, I.L., Lushnikov, S.G., Gvasaliya, S.N., Turoverov, K.K., Kuznetsova, I.M., Kojima, S.: Inelastic Incoherent Neutron Scattering in Some Proteins. Ferroelectrics 348, 556–562 (2007)

    Google Scholar 

  120. Cecchini, M., Houdusse, A., Karplus, M.: Allosteric communication in myosin V: from small conformational changes to large directed movements. PLOS Comput. Biol. 4, e1000129 (2008)

    MathSciNet  Google Scholar 

  121. Swain, J.F., Dinler, G., Sivendran, R., Montgomery, D.L., Stotz, M., Gierasch, L.M.: Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol. Cell. 26, 27–39 (2007)

    Google Scholar 

  122. Bhattacharya, A., Kurochkin, A.V., Yip, G.N.B., Zhang, Y., Bertelsen, E.B., Zuiderweg, E.R.P.: Allostery in Hsp70 chaperones is transduced by subdomain rotations. J. Mol. Biol. 388, 475–490 (2009)

    Google Scholar 

  123. Zhuravleva, A., Gierasch, L.M.: Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones. Proc. Natl. Acad. Sci. USA 108, 6987–6992 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Nicolaï .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nicolaï, A., Delarue, P., Senet, P. (2014). Low-Frequency, Functional, Modes of Proteins: All-Atom and Coarse-Grained Normal Mode Analysis. In: Liwo, A. (eds) Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes. Springer Series in Bio-/Neuroinformatics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28554-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28554-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28553-0

  • Online ISBN: 978-3-642-28554-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics