Skip to main content

Part of the book series: Springer Series in Bio-/Neuroinformatics ((SSBN,volume 1))

Abstract

Recent advances in nanotechnology have provided new experimental tools to study biological processes at the molecular level [1]. Instead of monitoring biochemical reactions involving macroscopic numbers of molecules one can now observe behavior of individual molecules by techniques of single molecule optical and force spectroscopies. The optical spectroscopy has been used primarily for identification of stages in protein folding [2, 3, 4, 5]. On the other hand, the force spectroscopy has been usually applied to establish a degree of mechanical stability through stretching either at constant speed or at constant force to induce unfolding. However, monitoring of the subsequent refolding events in a mechanically controlled environment has also been accomplished [9, 10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neuman, K.C., Nagy, A.: Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods 5, 491–505 (2008)

    Article  Google Scholar 

  2. Weiss, S.: Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999)

    Article  Google Scholar 

  3. Schuler, B., Lipman, E.A., Eaton, W.A.: Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419, 743–747 (2002)

    Article  Google Scholar 

  4. Yang, H., Luo, G.B., Karnchanaphanurach, P., Louie, T.M., Rech, I., Cova, S., Xun, L.Y., Xie, X.S.: Protein conformational dynamics probed by single-molecule electron transfer. Science 302, 262–266 (2003)

    Article  Google Scholar 

  5. Borgia, M.B., Borgia, A., Best, R.B., Steward, A., Nettels, D., Wunderlich, B., Schuler, B., Clarke, J.: Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins. Nature 474, 662–665

    Google Scholar 

  6. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., Gaub, H.E.: Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997)

    Article  Google Scholar 

  7. Improta, S., Politou, A.S., Pastore, A.: Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Struct. 4, 323–337 (1996)

    Article  Google Scholar 

  8. Marszalek, P.E., Lu, H., Li, H.B., Carrion-Vazquez, M., Oberhauser, A.F., Schulten, K., Fernandez, J.M.: Nature 402, 100–103 (1999)

    Article  Google Scholar 

  9. Fernandez, J.M., Li, H.B.: Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303, 1674–1678 (2004)

    Article  Google Scholar 

  10. Cecconi, C., Shank, E.A., Bustamante, C., Marqusee, S.: Direct observation of the three-state folding of a single protein molecule. Science 309, 2057–2060 (2005)

    Article  Google Scholar 

  11. Carrion-Vazquez, M., Cieplak, M., Oberhauser, A.F.: Protein mechanics at the single-molecule level. In: Meyers, R.A. (Editor-in-chief) Encyclopedia of Complexity and Systems Science, pp. 7026–7050. Springer, New York (2009)

    Chapter  Google Scholar 

  12. Crampton, N., Brockwell, D.J.: Unravelling the design principles for single protein mechanical strength. Curr. Opin. Struct. Biol. 20, 508–517 (2010)

    Article  Google Scholar 

  13. Del Rio, A., Perez-Jimenez, R., Liu, R.C., Roca-Cusachs, P., Fernandez, J.M., Sheetz, M.P.: Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009)

    Article  Google Scholar 

  14. Vogel, V.: Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu. Rev. Biophys. Biomol. Struct. 35, 459–488 (2006)

    Article  Google Scholar 

  15. Hervas, R., Oroz, J., Galera-Prat, A., Goni, O., Valbuena, A., Vera, A.M., Gomez-Socilia, A., Losada-Urzaiz, F., Uversky, V.N., Menendez, M., Laurents, D.V., Bruix, M., Carrion-Vazquez, M.: Common features at the start of the neurodegeneration cascade. PLoS Biology 10, e1001335 (2012)

    Article  Google Scholar 

  16. Lu, H., Schulten, K.: Steered molecular dynamics simulation of conformational changes of immunoglobulin domain I27 interprete atomic force microscopy observations. Chem. Phys. 247, 141–153 (1999)

    Article  Google Scholar 

  17. Paci, E., Karplus, M.: Unfolding proteins by external forces and temperature: the importance of topology and energetics. Proc. Natl. Acad. Sci. USA 97, 6521–6526 (2000)

    Article  Google Scholar 

  18. Bockelmann, U., Essevaz-Roulet, B., Heslot, F.: Molecular stick-slip motion revealed by opening DNA with piconewton forces. Phys. Rev. Lett. 79, 4489–4492 (1997)

    Article  Google Scholar 

  19. Hoang, T.X., Cieplak, M.: Molecular dynamics of folding of secondary structures in Go-like models of proteins. J. Chem. Phys. 112, 6851–6862 (2000)

    Article  Google Scholar 

  20. Cieplak, M., Hoang, T.X., Robbins, M.O.: Folding and stretching in a Go-like model of titin. Proteins: Function, Structure, and Genetics 49, 114–124 (2002)

    Article  Google Scholar 

  21. Cieplak, M., Hoang, T.X.: Universality classes in folding times of proteins. Biophys. J. 84, 475–488 (2003)

    Article  Google Scholar 

  22. Cieplak, M., Hoang, T.X., Robbins, M.O.: Thermal effects in stretching of Go-like models of titin and secondary structures. Proteins: Struct. Funct. Bio. 56, 285–297 (2004)

    Article  Google Scholar 

  23. Sułkowska, J.I., Cieplak, M.: Mechanical stretching of proteins – a theoretical survey of the Protein Data Bank. J. Phys.: Cond. Mat. 19, 283201 (2007)

    Article  Google Scholar 

  24. Yang, L.J., Tan, C.H., Hsieh, M.J., Wang, J.M., Duan, Y., Cieplak, P., Caldwell, J., Kollman, P.A., Luo, R.: New-generation amber united-atom force field. J. Phys. Chem. B 110, 13166–13176 (2006)

    Article  Google Scholar 

  25. Go, N.: Theoretical studies of protein folding. Annu. Rev. Biophys. Bioeng. 12, 183–210 (1983)

    Article  Google Scholar 

  26. Abe, H., Go, N.: Noninteracting local-structure model of folding and unfolding transition in globular proteins. II. Application to two-dimensional lattice proteins. Biopolymers 20, 1013–1031 (1981)

    Article  Google Scholar 

  27. Sali, A., Shakhnovich, E., Karplus, M.: How does a protein fold. Nature 369, 248–251 (1994)

    Article  Google Scholar 

  28. Shrivastava, I., Vishveshwara, S., Cieplak, M., Maritan, A., Banavar, J.R.: Lattice model for rapidly folding protein-like heteropolymers. Proc. Natl. Acad. Sci. USA 92, 9206–9209 (1995)

    Article  Google Scholar 

  29. Sułkowska, J.I., Cieplak, M.: Selection of optimal variants of Go-like models of proteins through studies of stretching. Biophys. J. 95, 3174–3191 (2008)

    Article  Google Scholar 

  30. Cieplak, M., Sułkowska, J.I.: Structure-Based Models of Biomolecules: Stretchnig of Proteins, Dynamics of Knots, Hydrodynamic Effects, and Indentation of Virus Capsids. In: Koliński, A. (ed.) Multiscale Approaches to Protein Modeling: Structure Prediction, Dynamics, Thermodynamics and Macromolecular Assemblies, vol. 8, pp. 179–208. Springer, New York (2010)

    Google Scholar 

  31. Clementi, C., Nymeyer, H., Onuchic, J.N.: Topological and energetic factors: What determines the structural details of the transition state ensemble and ”en-route” intermediates for protein folding? An investigation for small globular proteins. J. Mol. Biol. 298, 937–953 (2000)

    Article  Google Scholar 

  32. Karanicolas, J., Brooks III, C.L.: The origins of asymmetry in the folding transition states of protein L and protein G. Protein Sci. 11, 2351–2361 (2002)

    Article  Google Scholar 

  33. Cieplak, M.: Cooperativity and contact order in protein folding. Phys. Rev. E 69, 031907 (2004)

    Google Scholar 

  34. Wallin, S., Zeldovich, K.B., Shakhnovich, E.I.: Folding mechanics of a knotted protein. J. Mol. Biol. 368, 884–893 (2007)

    Article  Google Scholar 

  35. Sikora, M., Sułkowska, J.I., Cieplak, M.: Mechanical strength of 17 132 model proteins and cysteine slipknots. PloS Comp. Biol. 5, e1000547 (2008)

    Article  Google Scholar 

  36. Tsai, J., Taylor, R., Chothia, C., Gerstein, M.: The packing density in proteins: Standard radii and volumes. J. Mol. Biol. 290, 253–266 (1999)

    Article  Google Scholar 

  37. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., Gaub, H.E.: Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997)

    Article  Google Scholar 

  38. Carrion-Vasquez, M., Oberhauser, A.F., Fowler, S.B., Marszalek, P.E., Broedel, P.E., et al.: Mechanical and chemical unfolding of a single protein: a comparison. Proc. Natl. Acad. Sci. USA 96, 3694–3699 (1999)

    Article  Google Scholar 

  39. Valbuena, A., Oroz, J., Hervas, R.A., Vera, M., Rodriguez, D., Menendez, M., Sułkowska, J.I., Cieplak, M., Carrion-Vazquez, M.: On the remarkable mechanostability of scaffoldins and the mechanical clamp motif. Proc. Natl. Acad. Sci. USA 106, 13791–13796 (2009)

    Article  Google Scholar 

  40. Sikora, M., Cieplak, M.: Mechanical stability of multidomain proteins and novel mechanical clamps. Proteins: Struct. Funct. Bioinf. 79, 1786–1799 (2011)

    Article  Google Scholar 

  41. Sikora, M., Sułkowska, J.I., Witkowski, B.S., Cieplak, M.: BSDB: the Biomolecule Stretching Database. Nucl. Acid. Res. 39, D443–D450 (2011)

    Article  Google Scholar 

  42. Chen, J., Callis, P.R., King, J.: Mechanism of the very efficient quenching of tryptophan fluorescence in human γD- and γS-crystallins: The γ-crystallin fold may have evolved to protect tryptophan resdidues from ultraviolet photodamage. Biochemistry 48, 3708–3716 (2009)

    Article  Google Scholar 

  43. Flaugh, S.L., Kosinski-Collins, M.S., King, J.: Interdomain side-chain interactions in human γD-crystallin influencing folding and stability. Prot. Sci. 14, 2030–2043 (2005)

    Article  Google Scholar 

  44. McDonald, N.Q., Lapatto, R., Murray-Rust, J., Gunning, J., Wlodawer, A., Blundell, T.L.: New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor. Nature 414, 411–414 (1991)

    Article  Google Scholar 

  45. Murray-Rust, J., McDonald, N.Q., Blundell, T.L., Hosang, M., Oefner, C., Winkler, F., Bradshaw, R.A.: Topological similarities in TGF-beta 2, PDGF-BB and NGF define a superfamily of polypeptide growth factors. Structure 1, 153–159 (1993)

    Article  Google Scholar 

  46. Sun, P.D., Davies, D.R.: The Cystine-Knot Growth-Factor Superfamily. Annu. Rev. Biophys. Biomol. Struct. 24, 269–291 (1995)

    Article  MATH  Google Scholar 

  47. Iyer, S., Acharya, K.R.: The cystine signature and molecular-recognition processes of the vascular endothelial growth factor family of angiogenic cytokines. FEBS J. 278, 4304–4322 (2011)

    Article  Google Scholar 

  48. Peplowski, L., Sikora, M., Nowak, W., Cieplak, M.: Molecular jamming – the cysteine slipknot mechanical clamp in all-atom simulations. J. Chem. Phys. 134, 085102 (2011)

    Article  Google Scholar 

  49. Sikora, M., Cieplak, M.: Cystine plug and other novel mechanisms of large mechanical stability in dimeric proteins. Phys. Rev. Lett. 109, 208101 (2012)

    Article  Google Scholar 

  50. Sikora, M., Cieplak, M.: Formation of cystine slipknots in dimeric proteins. Plos One 8, e57443 (2013)

    Google Scholar 

  51. Niewieczerzał, S., Cieplak, M.: Hydrodynamic interactions in protein folding. J. Chem. Phys. 21, 124905 (2009)

    Google Scholar 

  52. Plaxco, K.W., Simons, K.T., Baker, D.: Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 277, 985–994 (1998)

    Article  Google Scholar 

  53. Plaxco, K.W., Simons, K.T., Ruczinski, I., Baker, D.: Topology, stability, sequence, and length: defining the determinants of two-state protein folding kinetics. Biochemistry 39, 11177–11183 (2000)

    Article  Google Scholar 

  54. Cieplak, M., Hoang, T.X., Robbins, M.O.: Stretching of proteins in the entropic limit. Phys. Rev. E 69, 011912 (2004)

    Article  Google Scholar 

  55. Yang, G., Cecconi, C., Baase, W.A., Vetter, I.R., Breyer, W.A., Haack, J.A., Matthews, B.W., Dahlquist, F.W., Bustamante, C.: Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme. Proc. Natl. Acad. Sci. USA 97, 139–144 (2000)

    Article  Google Scholar 

  56. Janowski, R., Kozak, M., Jankowska, E., Grzonka, Z., Grubb, A., Abrahamson, M., Jaskólski, M.: Human cystatin C, an amyloidogenic protein dimerizes through three-dimensional domain swapping. Nature Struct. Biol. 8, 316–320 (2001)

    Article  Google Scholar 

  57. Caspar, D., Klug, A.: Physical principles in the construction of regular viruses. In: Cold Spring Harbor Symposium on Quantitative Biology, vol. 27, pp. 1–24 (1962)

    Google Scholar 

  58. Roos, W.H., Bruisma, R., Wuite, G.J.L.: Physical virology. Nature Physics 6, 733–743 (2010)

    Article  Google Scholar 

  59. Michel, J.P., Ivanovska, I.L., Gibbons, M.M., Klug, W.S., Knobler, C.M., Wuite, G.J.L., Schmidt, C.F.: Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc. Natl. Acad. Sci. USA 103, 6184–6189 (2006)

    Article  Google Scholar 

  60. Klug, W.S., Bruinsma, R.F., Michel, J.-P., Knobler, C.M., Ivanovska, I.L., Schmidt, C.F., Wuite, G.J.L.: Failure of viral shells. Phys. Rev. Lett. 97, 228101 (2006)

    Article  Google Scholar 

  61. Carrasco, C., Carreira, A., Schaap, I.A.T., Serena, P.A., Gomez-Herrero, J., Mateu, M.G., de Pablo, P.J.: DNA-mediated anisotropic mechanical reinforcement of a virus. Proc. Natl. Acad. Sci. USA 103, 13706–13711 (2006)

    Article  Google Scholar 

  62. Carrasco, C., Castellanos, M., de Pablo, P.J., Mateu, M.G.: Manipulation of the mechanical properties of a virus by protein engineering. Proc. Natl. Acad. Sci. USA 105, 4150–4155 (2008)

    Article  Google Scholar 

  63. Cieplak, M., Robbins, M.O.: Nanoindentation of virus capsids in a molecular model. J. Chem. Phys. 132, 015101 (2010)

    Article  Google Scholar 

  64. Cieplak, M., Robbins, M.O.: Nanoindentation of 35 virus capsids in a molecular model. Plos One (in press, 2013)

    Google Scholar 

  65. Carrillo-Tripp, M., Shepherd, C.M., Borelli, I.A., Venkataraman, S., Lander, G., Natarajan, P., Johnson, J.E., Brooks III, C.L., Reddy, V.S.: VIPERdb2: and enhanced and web API enabled relational database for structural virology. Nucl. Acids Res. 37, D436–D442 (2009), http://viperdb.scripps.edu/

    Article  Google Scholar 

  66. Gibbons, M.M., Klug, W.S.: Nonlinear finite-element analysis of nanoindentation of viral capsids. Phys. Rev. E 75, 031901 (2007)

    Article  Google Scholar 

  67. Gibbons, M.M., Klug, W.S.: Influence of nonuniform geometry on nanoindentation of viral capsids. Biophys. J. 95, 3640–3649 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Cieplak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cieplak, M. (2014). Mechanostability of Virus Capsids and Their Proteins in Structure-Based Models. In: Liwo, A. (eds) Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes. Springer Series in Bio-/Neuroinformatics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28554-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28554-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28553-0

  • Online ISBN: 978-3-642-28554-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics