Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 689 Accesses

Abstract

Probability is a concept familiar to the vast majority of readers on an intuitive level, however in a stricter sense it is generally poorly understood. A substantial fraction of this thesis draws ideas and tools from the rigorous theories of probability and thus it is apt to provide a fuller account of the rudimentary mathematical principles. This chapter does not aim to give an exhaustive exposition of probability theory (fuller discussion can be found in many existing texts, such as [2,5,10,11,16], but instead particular attention is given to the meaning of randomness, whereby a suitable parameterisation of the statistics involved can be formulated.

The scientist has a lot of experience with ignorance and doubt and uncertainty, and this experience is of very great importance, I think.Richard P. Feynman

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although relative frequency, defined as \(f=\lim _{N\rightarrow \infty }n/N\), where \(n\) is the number of occurrences of a particular outcome in \(N\) repetitions of the random experiment, is perhaps the most intuitive manner in which to define probabilities, an axiomatic definition as first formulated by Kolmogorov [14, 15], is sometimes preferred since there is no guarantee that this limit exists.

  2. 2.

    If this assumption of independence between disjoint time intervals is relaxed one enters the domain of quantum light sources, which possess different photon statistics. For example photon number state sources [6] emit a single photon at very precisely defined regular times.

  3. 3.

    It would therefore be expected that a Poisson random variable with a large mean would be well approximated by a Gaussian random variable, a result that is born out in practise.

  4. 4.

    It should be noted that the derivation given is not strictly rigorous since it only proves convergence of the partition function \(\exp [i \omega Z_n]\). The reader is directed to [17] for a fuller treatment.

References

  1. N. Abramson, Information Theory and Coding (McGraw Hill, New York, 1963)

    Google Scholar 

  2. R.B. Ash, C.A. Doléans-Dade, Probability and Measure Theory (Elsevier Academic Press, New York, 1999)

    Google Scholar 

  3. M.L. Boas, Mathematical Methods in the Physical Sciences, 2nd edn. (Wiley, New York, 1983)

    Google Scholar 

  4. V. Delaubert, N. Treps, C. Fabre, A. Maître, H.A. Bachor, P. Réfrégier, Quantum limits in image processing. Europhys. Lett. 81, 44001 (2008)

    Article  ADS  Google Scholar 

  5. W. Feller, Probability Theory and its Applications (Addison-Wesley, Reading, 1950)

    MATH  Google Scholar 

  6. M. Fox, Quantum Optics: An Introduction. Oxford Master Series in Physics (Oxford University Press, Oxford, 2006)

    Google Scholar 

  7. J.W. Goodman, Statistical Optics (Wiley, New York, 2004)

    Google Scholar 

  8. F. Hitoshi, A. Toshimitsu, N. Kunihiko, S. Yoshihisa, O. Takehiko, Blood flow observed by time-varying laser speckle. Opt. Lett. 10(3), 104–106 (1985)

    Article  Google Scholar 

  9. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Math. Phys. Eng. Sci. 454, 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Itô, Introduction to Probability Theory (Cambridge University Press, Cambridge, 1984)

    MATH  Google Scholar 

  11. J. Jacod, P. Protter, Probability Essentials (Springer, New York, 2004)

    Book  Google Scholar 

  12. S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall, London, 1993)

    MATH  Google Scholar 

  13. A. Khintchine, Korrelationstheorie der stationären stochastischen Prozesse. Math. Ann. 109, 604–615 (1934)

    Article  MathSciNet  Google Scholar 

  14. A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung (Springer, Heidelberg, 1933)

    Google Scholar 

  15. A. Kolmogorov, Foundations of the Theory of Probability, 2nd edn. (Chelsea Publishing, New York, 1956)

    Google Scholar 

  16. A. Leon-Garcia, Probability and Random Processes for Electrical Engineering (Addison-Wesley, Reading, 1994)

    Google Scholar 

  17. M. Loève, Probability Theory, 4th edn. (Springer, Heidelberg, 1978)

    Google Scholar 

  18. R. Loudon, The Quantum Theory of Light, 3rd edn. (Clarendon Press, Oxford, 2000)

    Google Scholar 

  19. L. Mandel, Fluctuations of Light Beams. Progress in Optics, vol. 2 (North-Holland Publishing Co., Amsterdam, 1963)

    Google Scholar 

  20. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  21. W. Martin, P. Flandrin, Spectral analysis of nonstationary processes. IEEE Trans. Acoust. Speech. 33, 1461–1470 (1985)

    Article  Google Scholar 

  22. G. Matz, F. Hlawatsch, W. Kozek, Generalized evolutionary spectral analysis and the Weyl spectrum of nonstationary random processes. IEEE Trans. Signal Process. 45, 1520–1534 (1997)

    Article  ADS  MATH  Google Scholar 

  23. M.B. Priestley, Power spectral analysis of non-stationary random processes. J. Sound Vib. 6(1), 86–97 (1967)

    Article  MathSciNet  ADS  Google Scholar 

  24. L.L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series Analysis (Addison-Wesley, Reading, 1991)

    MATH  Google Scholar 

  25. C. E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 and 623–656 (1948)

    Google Scholar 

  26. C.E. Shannon, Communication in the presence of noise. Proc. IRE 37, 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  27. N. Treps, V. Delaubert, A. Maître, J.M. Courty, C. Fabre, Quantum noise in multipixel image processing. Phys. Rev. A 71, 013820 (2005)

    Article  ADS  Google Scholar 

  28. A. van den Bos, A Cramér-Rao lower bound for complex parameters. IEEE Trans. Signal Process. 42, 2859 (1994)

    Article  ADS  Google Scholar 

  29. W. Weaver, Some Recent Contributions to the Mathematical Theory of Communication (University of Illinois Press, Urbana, 1949)

    Google Scholar 

  30. N. Wiener, Generalized harmonic analysis. Acta Math. 55, 117–258 (1930)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Foreman .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Foreman, M.R. (2012). Fundamentals of Probability Theory. In: Informational Limits in Optical Polarimetry and Vectorial Imaging. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28528-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28528-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28527-1

  • Online ISBN: 978-3-642-28528-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics