Skip to main content

Biosensing with Optical Waveguides

  • Chapter
  • First Online:
Bio and Nano Packaging Techniques for Electron Devices
  • 1840 Accesses

Abstract

The chapter gives an overview on modern technologies utilizing optical waveguides for biological, medical and environmental sensing. Section 28.2 presents state-of-the-art transduction mechanisms used in extrinsic sensor schemes as well as the potential and setup of the corresponding biooptrodes. The emphasis of Sect. 28.3 is on intrinsic methods, where the optical waveguide works as a bio-optical transducer itself. High precision techniques to evaluate the resulting changes of the waveguide’s properties will be discussed as well as the impact of the waveguide’s geometry on functionality and sensitivity of the sensor. In order to illustrate the variety of possible implementations, two novel biosensors will be presented in detail. The first one deploys a planar-optical waveguide to form a microring resonator, while the second uses grating structures inscribed in an optical fiber for the excitation of surface plasmon waves. Section 28.4 gives an introduction to the necessary biofunctionalization of the optical waveguide surface. Section 28.5 discusses the assembly of the sensor with focus on coupling and alignment of the light source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allsop, T., Reeves, R., Webb, D.J., Bennion, I., Neal, R.: A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer. Rev. Sci. Instrum. 73, 1702 (2002)

    Article  CAS  Google Scholar 

  2. Allsop, T., Zhang, L., Bennion, I.: Detection of organic aromatic compounds in paraffin by a long-period fiber grating optical sensor with optimized sensitivity. Opt. Commun. 191, 181–190 (2001)

    Article  CAS  Google Scholar 

  3. Almeida, V.R., Panepucci, R.R., Lipson, M.: Nanotaper for compact mode conversion. Opt. Lett. 28, 1302–1304 (2003)

    Article  CAS  Google Scholar 

  4. Armani, A.M., Kulkarni, R.P., Fraser, S.E., Flagan, R.C., Vahala, K.J.: Label-free, single-molecule detection with optical microcavities. Science 317, 783 (2007)

    Article  CAS  Google Scholar 

  5. Armani, D.K., Kippenberg, T.J., Spillane, S.M., Vahala, K.J.: Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003)

    Article  CAS  Google Scholar 

  6. Bishop, A.R., Nuzzo, R.G.: Self-assembled monolayers: Recent developments and applications. Curr. Opin. Colloid Interface Sci. 1(1), 127–136 (1996)

    Article  CAS  Google Scholar 

  7. Blair, S., Chen, Y.: Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities. Appl. Opt. 40, 570–582 (2001)

    Article  CAS  Google Scholar 

  8. Bogaerts, W., Taillaert, D., Dumon, P., Van Thourhout, D., Baets, R., Pluk, E.: A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires. Opt. Express 15, 1567–1578 (2007)

    Article  Google Scholar 

  9. Boyd, R.W., Heebner, J.E.: Sensitive disk resonator photonic biosensor. resonance 5, 7 (2001)

    Google Scholar 

  10. Chao, C., Guo, L.J.: Polymer microring resonators fabricated by nanoimprint technique. J. Vac. Sci. Technol. B 20, 2862 (2002)

    Google Scholar 

  11. Chao, C.Y., Fung, W., Guo, L.J.: Polymer microring resonators for biochemical sensing applications. IEEE J. Sel. Top. Quant. Electr. 12, 134–142 (2006)

    Article  CAS  Google Scholar 

  12. Chao, C.Y., Guo, L.J.: Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl. Phys. Lett. 83, 1527 (2003)

    Article  CAS  Google Scholar 

  13. Chao, C.Y., Guo, L.J.: Reduction of surface scattering loss in polymer microrings using thermal-reflow technique. IEEE Photonics Technol. Lett. 16, 1498–1500 (2004)

    Article  Google Scholar 

  14. Chao, C.Y., Guo, L.J.: Design and optimization of microring resonators in biochemical sensing applications. J. Lightwave Technol. 24, 1395 (2006)

    Article  CAS  Google Scholar 

  15. Chen, R.T., Lin, L., Choi, C., Liu, Y.J., Bihari, B., Wu, L., Tang, S., Wickman, R., Picor, B., Hibbs-Brenner, M.K., et al.: Fully embedded board-level guided-wave optoelectronic interconnects. Proceedings-IEEE 88, 780–793 (2000)

    Article  Google Scholar 

  16. Chiu, M.H., Shih, C.H., Chi, M.H.: Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement. Sens. Actuators, B 123, 1120–1124 (2007)

    Google Scholar 

  17. Chryssis, A.N., Saini, S.S., Lee, S.M., Yi, H., Bentley, W.E., Dagenais, M.: Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors. IEEE J. Sel. Top. Quantum Electron. 11, 864–872 (2005)

    Article  CAS  Google Scholar 

  18. Dakin, J., Culshaw, B.: Optical Fiber Sensors, vol. 4. Artech House, Boston (1997)

    Google Scholar 

  19. Daniels, P.B., Deacon, J.K., Eddowes, M.J., Pedley, D.G.: Surface plasmon resonance applied to immunosensing. Sens. Actuators 15(1), 11–18 (1988)

    Article  CAS  Google Scholar 

  20. Day, Y.S.N., Baird, C.L., Rich, R.L., Myszka, D.G.: Direct comparison of binding equilibrium, thermodynamic, and rate constants determined by surface-and solution-based biophysical methods. Protein Sci. 11(5), 1017–1025 (2002)

    Article  CAS  Google Scholar 

  21. De Vos, K., Bartolozzi, I., Schacht, E., Bienstman, P., Baets, R.: Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Opt. Express 15, 7610–7615 (2007)

    Article  Google Scholar 

  22. Dostalek, J., Ctyroky, J., Homola, J., Brynda, E., Skalsky, M., Nekvindova, P., Spirkova, J., Skvor, J., Schroefel, J.: Surface plasmon resonance biosensor based on integrated optical waveguide. Sens. Actuators, B 76, 8–12 (2001)

    Google Scholar 

  23. Drapp, B., Piehler, J., Brecht, A., Gauglitz, G., Luff, B.J., Wilkinson, J.S., Ingenhoff, J.: Integrated optical Mach-Zehnder interferometers as simazine immunoprobes. Sens. Actuators, B 39, 277–282 (1997)

    Google Scholar 

  24. Eggins, B.R.: Chemical Sensors and Biosensors. Wiley, London (2002)

    Google Scholar 

  25. Epstein, J.R., Leung, A.P.K., Lee, K.H., Walt, D.R.: High-density, microsphere-based fiber optic DNA microarrays. Biosens. Bioelectron. 18, 541–546 (2003)

    Article  CAS  Google Scholar 

  26. Feldstein, M.J., Golden, J.P., Rowe, C.A., MacCraith, B.D., Ligler, F.S.: Array biosensor: optical and fluidics systems. Biomedical Microdevices 1, 139–153 (1999)

    Article  CAS  Google Scholar 

  27. Fort, E., Gresillon, S.: Surface enhanced fluorescence. J. Phys. D: Appl. Phys. 41, 13001 (2008)

    Google Scholar 

  28. Gershon, P.D., Khilko, S.: Stable chelating linkage for reversible immobilization of oligohistidine tagged proteins in the BIAcore surface plasmon resonance detector. J. Immunol. Methods 183(1), 65–76 (1995)

    Article  CAS  Google Scholar 

  29. Guo, L.J.: Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007)

    Article  CAS  Google Scholar 

  30. Hauffe, R., Siebel, U., Petermann, K., Moosburger, R., Kropp, J.R., Arndt, F.: Methods for passive fiber chip coupling of integrated optical devices. In: Electronic Components and Technology Conference, Las Vegas, USA, pp. 238–243. (2000)

    Google Scholar 

  31. He, Y.J., Lo, Y.L., Huang, J.F.: Optical-fiber surface-plasmon-resonance sensor employing long-period fiber gratings in multiplexing. J. Opt. Soc. Am. B: Opt. Phys. 23, 801–811 (2006)

    Article  CAS  Google Scholar 

  32. Henzi, P., Rabus, D.G., Wallrabe, U., Mohr, J.: Fabrication of photonic integrated circuits by DUV-induced modification of polymers. In: Proceedings of the SPIE, vol. 5451, pp. 24–31 (2004)

    Google Scholar 

  33. Hoffman, W.L., O’Shannessy, D.J.: Site-specific immobilization of antibodies by their oligosaccharide moieties to new hydrazide derivatized solid supports. J. Immunol. Methods 112(1), 113–120 (1988)

    Article  CAS  Google Scholar 

  34. Holm, J., Ahlfeldt, H., Svensson, M., Vieider, C.: Through-etched silicon carriers for passive alignment of optical fibers to surface-active optoelectronic components. Sens. Actuators, A 82, 245–248 (2000)

    Google Scholar 

  35. Homola, J., Dostalek, J.: Surface plasmon resonance based sensors. Springer Verlag, New York (2006)

    Google Scholar 

  36. Horie, K., Ushiki, H., Winnik, F.M.: Molecular Photonics—Fundamentals and Practical Aspects. Wiley-VCH, Weinheim (2000)

    Google Scholar 

  37. Iga, M., Seki, A., Watanabe, K.: Hetero-core structured fiber optic surface plasmon resonance sensor with silver film. Sens. Actuators, B 101, 368–372 (2004)

    Google Scholar 

  38. Jinn-Nan, L., et al.: Comparison of site-specific coupling chemistry for antibody immobilization on different solid supports. J. Chromatogr. A 542, 41–54 (1991)

    Article  Google Scholar 

  39. Johnsson, B., Lofas, S., Lindquist, G.: Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal. Biochem. 198(2), 268–277 (1991)

    Article  CAS  Google Scholar 

  40. Johnsson, B., Lofas, S., Lindquist, G., Edstrom, A., Hillgren, R.M.M., Hansson, A.: Comparison of methods for immobilization to carboxymethyl dextran sensor surfaces by analysis of the specific activity of monoclonal antibodies. Journal of Molecular Recognition 8(1–2), 125–131 (1995)

    Article  CAS  Google Scholar 

  41. Kick, A., Bonsch, M., Kummer, K., Vyalikh, D.V., Molodtsov, S.L., Mertig, M.: Controlling structural properties of self-assembled oligonucleotide-mercaptohexanol monolayers. J. Electron Spectrosc. Relat. Phenom. 172(1–3), 36–41 (2009)

    Article  CAS  Google Scholar 

  42. Kirchner, R., Landgraf, R., Bertram, M.: Fischer. Direct UV-nanoimprint of polymer microring resonators as optical transducers. GMM-Fachbericht-Mikro-Nano-Integration, W.J. (2010)

    Google Scholar 

  43. Kretschmann, E.: Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflaechenplasmaschwingungen. Z. Phys. A: At. Nucl. 241, 313–324 (1971)

    CAS  Google Scholar 

  44. Krioukov, E., Greve, J., Otto, C.: Performance of integrated optical microcavities for refractive index and fluorescence sensing. Sens. Actuators, B 90, 58–67 (2003)

    Google Scholar 

  45. Kummer, K., Vyalikh, D.V., Gavrila, G., Kade, A., Weigel-Jech, M., Mertig, M., Molodtsov, S.L.: High-resolution photoelectron spectroscopy of self-assembled mercaptohexanol monolayers on gold surfaces. J. Electron Spectrosc. Relat. Phenom. 163(1–3), 59–64 (2008)

    Article  CAS  Google Scholar 

  46. Lahiri, J., Isaacs, L., Tien, J., Whitesides, G.M.: A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. Anal. Chem 71(4), 777–790 (1999)

    Article  CAS  Google Scholar 

  47. Landgraf, R., Kaiser, M.K., Posseckardt, J., Adolphi, B., Fischer, W.J.: Functionalization of Polymer Sensor Surfaces by Oxygen Plasma Treatment. Procedia Chemistry 1, 1015–1018 (2009)

    Article  Google Scholar 

  48. Little, B.E., Chu, S.T., Haus, H.A., Foresi, J., Laine, J.P.: Microring resonator channel dropping filters. J. Lightwave Technol. 15, 998–1005 (1997)

    Article  Google Scholar 

  49. Little, B.E., Chu, S.T., Pan, W., Ripin, D., Kaneko, T., Kokubun, Y., Ippen, E.: Vertically coupled glass microring resonator channel droppingfilters. IEEE Photonics Technol. Lett. 11, 215–217 (1999)

    Article  Google Scholar 

  50. Luff, B.J., Harris, R.D., Wilkinson, J.S., Wilson, R., Schiffrin, D.J.: Integrated-optical directional coupler biosensor. Opt. Lett. 21, 618–620 (1996)

    Article  CAS  Google Scholar 

  51. Mann, C.J., Stephens, S.K., Burke, J.F.: Production of protein microarrays. In: Kambhampati, D. (ed.) Protein Microarray Technology, pp. 165–194. Wiley-VCH, Weinheim (2004)

    Google Scholar 

  52. Marcatili, E.A.J.: Bends in optical dielectric guides. Bell System Technical Journal 48, 2103–2132 (1969)

    Google Scholar 

  53. Mayinger, F., Feldmann, O.: Optical Measurements—Techniques and Apllications. Springer, New York (2001)

    Google Scholar 

  54. Mertig, M., Kick, A., Bonsch, M., Katzschner, B., Voigt, J., Sonntag, F., Schilling, N., Klotzbach, U., Danz, N., Begemann, S., et al.: A novel platform technology for the detection of genetic variations by surface plasmon resonance. In: IEEE Sensors 2009, pp. 392–395. (2010)

    Google Scholar 

  55. Millaruelo, M., Eng, L.M., Mertig, M., Pilch, B., Oertel, U., Opitz, J., Sieczkowska, B., Simon, F., Voit, B.: Photolabile carboxylic acid protected terpolymers for surface patterning. Part 2: Photocleavage and film patterning. Langmuir 22(22), 9446–9452 (2006)

    Article  CAS  Google Scholar 

  56. Minh, P.N., Ono, T., Tanaka, S., Esashi, M.: Near-field optical apertured tip and modified structures for local field enhancement. Appl. Opt 40, 2479–2484 (2001)

    Article  CAS  Google Scholar 

  57. Moerman, I., Van Daele, P.P., Demeester, P.M.: A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices. IEEE J. Sel. Topics in. Quantum Electron. 3, 1308–1320 (1998)

    Google Scholar 

  58. Monzon-Hernandez, D., Villatoro, J.: High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor. Sens. Actuators, B 115, 227–231 (2006)

    Google Scholar 

  59. Nemova, G., Kashyap, R.: Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating. J. Eur. Opt. Soc. Part B 24, 2696–2701 (2007)

    Article  CAS  Google Scholar 

  60. Obando, L.A., Booksh, K.S.: Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors. Anal. Chem. 71, 5116–5122 (1999)

    Article  CAS  Google Scholar 

  61. Opitz, J., Braun, F., Seidel, R., Pompe, W., Voit, B., Mertig, M.: Site-specific binding and stretching of DNA molecules at UV-light-patterned aminoterpolymer films. Nanotechnology 15, 717 (2004)

    Article  CAS  Google Scholar 

  62. Ostuni, E., Chapman, R.G., Holmlin, R.E., Takayama, S., Whitesides, G.: A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 17(18), 5605–5620 (2001)

    Article  CAS  Google Scholar 

  63. Othonos, A., Kalli, K.: Fiber Bragg Gratings. Artech House, Boston (1999)

    Google Scholar 

  64. Piliarik, M., Homola, J., Manikova, Z., Ctyroky, J.: Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber. Sens. Actuators, B 90, 236–242 (2003)

    Google Scholar 

  65. Poon, J., Zhu, L., DeRose, G., Yariv, A.: Polymer microring coupled-resonator optical waveguides. J. Lightwave Technol. 24, 1843 (2006)

    Article  CAS  Google Scholar 

  66. Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer-Verlag Berlin (1988)

    Google Scholar 

  67. Roelkens, G., Van Thourhout, D., Baets, R., Noetzel, R., Smit, M.: Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit. Opt. Express 14, 8154–8159 (2006)

    Article  CAS  Google Scholar 

  68. Schmitt, K., Schirmer, B., Hoffmann, C., Brandenburg, A., Meyrueis, P.: Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions. Biosens. Bioelectron. 22, 2591–2597 (2007)

    Article  CAS  Google Scholar 

  69. Schuster, T., Herschel, R., Neumann, N., Schaffer, C.G.: Miniaturized long-period fiber grating assisted surface plasmon resonance sensor. J. Lightwave Technol. 99, 1–1 (2011)

    Google Scholar 

  70. Seibel, E.J., Johnston, R.S., Melville, C.D.: A full-color scanning fiber endoscope. In: Proceedings of the SPIE 6083 Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications VI, pp. 9–16. (2006)

    Google Scholar 

  71. Slavik, R., Homola, J., Ctyroky, J.: Single-mode optical fiber surface plasmon resonance sensor. Sens. Actuators, B 54, 74–79 (1999)

    Google Scholar 

  72. Snyder, A.W., Love. J.D.:Optical Waveguide Theory. Chapman& Hall, London (1991)

    Google Scholar 

  73. Souriau, J.C., Cobbe, A., Delatouche, N., Massit, C.: Passive fibre alignment on optoelectronic components for electro-optical links based on single-chip technology and VCSELs. In: technical paper presented at Strasbourg during an IMPS European Meeting, vol. 2 (2001)

    Google Scholar 

  74. Spackova, B., Piliarik, M., Kvasnicka, P., Themistos, C., Rajarajan, M., Homola, J.: Novel concept of multi-channel fiber optic surface plasmon resonance sensor. Sens. Actuators, B 139, 199–203 (2009)

    Google Scholar 

  75. Spinke, J., Liley, M., Schmitt, F.J., Guder, H.J., Angermaier, L., Knoll, W.: Molecular recognition at self-assembled monolayers: Optimization of surface functionalization. J. Chem. Phys. 99, 7012 (1993)

    Article  CAS  Google Scholar 

  76. Stadermann, J., Erber, M., Komber, H., Brandt, J., Eichhorn, K.J., Bonsch, M., Mertig, M., Voit, B.: Photopatternable films of block copolymers prepared through double-click reaction. Macromolecules 43(7), 3136–3140 (2010)

    Article  CAS  Google Scholar 

  77. Stiles, P.L., Dieringer, J.A., Shah, N.C., Van Duyne, R.P.: Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008)

    Google Scholar 

  78. Sure, A., Dillon, T., Murakowski, J., Lin, C., Pustai, D., Prather, D.W.: Fabrication and characterization of three-dimensional silicon tapers. Communications 1, 6 (2002)

    Google Scholar 

  79. Taillaert, D., Bogaerts, W., Bienstman, P., Krauss, T.F., Van Daele, P., Moerman, I., Verstuyft, S., De Mesel, K., Baets, R.: An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. IEEE J. Quantum. Electron. 38, 949–955 (2002)

    Article  CAS  Google Scholar 

  80. Tamir, T., Peng, S.: Analysis and design of grating couplers. Appl. Phys. A 14, 235–254 (1977)

    Google Scholar 

  81. Ulman, A.: Formation and structure of self-assembled monolayers. Chem. Rev 96(4), 1533–1554 (1996)

    Article  CAS  Google Scholar 

  82. Utzinger, U., Richards-Kortum, R.R.: Fiber optic probes for biomedical optical spectroscopy. Journal of Biomedical Optics 8, 121 (2003)

    Article  Google Scholar 

  83. Van Laere, T., Claes, T., Schrauwen, J., Scheerlinck, S., Bogaerts, W., Taillaert, D., O Faolain, L., Van Thourhout, D., Baets, R.: Compact focusing grating couplers for silicon-on-insulator integrated circuits. IEEE Photonic. Tech. Lett. 19, 1919 (2007)

    Google Scholar 

  84. Vo-Dinh, T., Cullum, B.M., Stokes, D.L.: Nanosensors and biochips: frontiers in biomolecular diagnostics. Sens. Actuators, B 74, 2–11 (2001)

    Google Scholar 

  85. Vollmer, F., Braun, D., Libchaber, A., Khoshsima, M., Teraoka, I., Arnold, S.: Protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 80, 4057 (2002)

    Article  CAS  Google Scholar 

  86. Wahlbrink, T., Tsai, W.S., Waldow, M., Foerst, M., Bolten, J., Mollenhauer, T., Kurz, H.: Fabrication of high efficiency SOI taper structures. Microelectron. Eng. 86, 1117–1119 (2009)

    Article  CAS  Google Scholar 

  87. Waldhaeusl, R., Schnabel, B., Dannberg, P., Kley, E.B., Braeuer, A., Karthe, W.: Efficient coupling into polymer waveguides by gratings. Appl. Opt. 36, 9383–9390 (1997)

    Article  Google Scholar 

  88. Yalcin, A., Popat, K.C., Aldridge, J.C., Desai, T., Hryniewicz, J., Chbouki, N., Little, B.E., King, O., Van, V., Chu, S., et al.: Optical sensing of biomolecules using microring resonators. IEEE J. Sel. Top. Quantum Electron. 12 148–154 (2006)

    Google Scholar 

  89. Yang, N., Su, X., Tjong, V., Knoll, W.: Evaluation of two-and three-dimensional streptavidin binding platforms for surface plasmon resonance spectroscopy studies of DNA hybridization and protein-DNA binding. Biosens. Bioelectron. 22(11), 2700–2706 (2007)

    Article  CAS  Google Scholar 

  90. Yariv, A.: Coupled-mode theory for guided-wave optics. IEEE J. Quantum. Electron. 9, 919–933 (1973)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Schuster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schuster, T., Landgraf, R., Finn, A., Mertig, M. (2012). Biosensing with Optical Waveguides. In: Gerlach, G., Wolter, KJ. (eds) Bio and Nano Packaging Techniques for Electron Devices. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28522-6_28

Download citation

Publish with us

Policies and ethics