Skip to main content

Photonic System Integration of Optical Waveguides in MOEMS

  • Chapter
  • First Online:
  • 1813 Accesses

Abstract

This chapter gives an overview about the state-of-the-art of photonic system integration into electronic systems. Apart from parallel optical communication within high performance computing systems as its main driver, photonic system integration will be a key enabler for advanced opto-mechatronic systems especially for sensing in bio- and nano-electronics. From the technological point-of-view waveguide fabrication, integration as well as its coupling with electro-optical components is discussed. Requirements and trends for active optical components as well as advancements in nano-photonic integration will be considered. Furthermore, the challenges for this hybrid system integration will be shown as well as future developments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Assefa, S., Xia, F., Vlasov, Y.A.: Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 464, 80–84 (2010). doi:10.1038/nature08813

    Google Scholar 

  2. Brusberg, L., Schlepple, N., Schroder, H.: Chip-to-chip communication by optical routing inside a thin glass substrate. In: IEEE 61st Electronic Components and Technology Conference (ECTC), pp. 805–812 (2011). doi:10.1109/ECTC.2011.5898603

  3. Chan, B., Lin, H., Carver, C., Huang, J., Berry, J.: Organic optical waveguide fabrication in a manufacturing environment. In: Proceedings of the IEEE 60th Electronic Components and Technology Conference (ECTC), pp. 2012–2018. Endicott Interconnect Technologies, IEEE (2010). doi:10.1109/ECTC.2010.5490669

  4. Chang, Y.J., Guidotti, D., Chang, G.K.: An anchor-board-based flexible optoelectronic harness for off-chip optical interconnects. Photonics Technol. Lett. IEEE 20(10), 839–841 (2008). doi:10.1109/LPT.2008.921822

    Article  Google Scholar 

  5. Chappell, J., Hutt, D., Conway, P.: Variation in the line stability of an inkjet printed optical waveguide-applicable material. In: 2nd Electronics System-Integration Technology Conference (ESTC), pp. 1267–1272 (2008). doi:10.1109/ESTC.2008.4684536

  6. Clark, C., Robinson, J., Clayton, R.: Flexible polymer waveguides for optical wire bonds. J. Opt. A Pure Appl. Opt. 4(6), S224 (2002)

    Article  CAS  Google Scholar 

  7. Daele, P.V., Geerinck, P., Steenberge, G.V., Put, S.V., Cauwe, M.: Laser ablation as an enabling technology for opto-boards. In: Proceedings of 53rd Electronic Components and Technology Conference, pp. 1140–1146. Ghent University, IMEC (2003)

    Google Scholar 

  8. Dumke, M., Rieske, R., Craiovan, D., Fischer, C., Overmeyer, L.: Dispensing and printing of polymer optical waveguides. In: Proceedings of EOS MOC, München (2011)

    Google Scholar 

  9. Estevez, C.I., Guidotti, D., Chang, G.K.: A novel lightwave device integration and coupling process for optical interconnects. In: 59th Electronic Components and Technology Conference (ECTC), pp. 1859–1864. GATech (2009). doi:10.1109/ECTC.2009.5074273

  10. Fang, A.W., Park, H., Jones, R., Cohen, O., Paniccia, M.J., Bowers, J.E.: A continuous-wave hybrid AlGaInAs-silicon evanescent laser. Photonics Technol. Lett. IEEE 18(10), 1143–1145 (2006). doi:10.1109/LPT.2006.874690

    Article  CAS  Google Scholar 

  11. Feng, D., Feng, N.N., Kung, C.C., Liang, H., Qian, W., Fong, J., Luff, B.J., Asghari, M.: Compact single-chip VMUX/DEMUX on the silicon-on-insulator platform. Opt. Express 19, 6125–61320 (2011)

    Google Scholar 

  12. Gauglitz, G.: Direct optical sensors: principles and selected applications. Anal. Bioanal. Chem. 381, 141–155 (2005). doi:10.1007/s00216-004-2895-4

  13. Green, W.M., Rooks, M.J., Sekaric, L., Vlasov, Y.A.: Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt. Express 15(25), 17106–17113 (2007). doi:10.1364/OE.15.017106

    Google Scholar 

  14. Hendrickx, N., Erps, J.V., Thienpont, H., Daele, P.V.: Inter-plane coupling structures for pcb-integrated multilayer optical interconnection. In: Proceedings of the 16th European Microelectronics and Packaging Conference (EMPC), pp. 65–69. Ghent University (2007)

    Google Scholar 

  15. IPC International Technology Roadmap for Electronic Interconnections, IPC, Vol. 1 trends and issues. Technical Report (2006/2007)

    Google Scholar 

  16. Koch, B., Alduino, A., Liao, L., Jones, R., Morse, M., Kim, B., Lo, W.Z., Basak, J., Liu, H.F., Rong, H., Sysak, M., Krause, C., Saba, R., Lazar, D., Horwitz, L., Bar, R., Litski, S., Liu, A., Sullivan, K., Dosunmu, O., Na, N., Yin, T., Haubensack, F., wei Hsieh, I., Heck, J., Beatty, R., Bovington, J., Paniccia, M.: A \(4 \times 12.5\) Gb/s CWDM Si photonics link using integrated hybrid silicon lasers. In: Conference on Lasers and Electro-Optics (CLEO), pp. 1–2 (2011)

    Google Scholar 

  17. Liu, A., Liao, L., Rubin, D., Nguyen, H., Ciftcioglu, B., Chetrit, Y., Izhaky, N., Paniccia, M.: High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 15(2), 660–668 (2007). doi:10.1364/OE.15.000660

    Article  Google Scholar 

  18. März, R.: Optische Kommunikationstechnik, chap. Optische Schaltungen. Springer, Berlin (2002)

    Google Scholar 

  19. Mori, T., Fujiwara, M., Terada, S., Choki, K.: Compact and high-density opto-electronic transceiver module for chip-to-chip optical interconnects. In: Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, pp. 1–3. Sumitomo (2011)

    Google Scholar 

  20. Nieweglowski, K., Rieske, R., Wolter, K.J.: Demonstration of board-level optical link with ceramic optoelectronic multi-chip module. In: Proceedings of IEEE 59th Electronic Components and Technology Conference (ECTC), pp. 1879–1886 (2009)

    Google Scholar 

  21. Nieweglowski, K., Rieske, R., Wolter, K.J.: Assembly requirements for multi-channel coupling micro-optics in board-level optical interconnects. In: 3rd Electronic System-Integration Technology Conference (ESTC), pp. 1–6 (2010). doi:10.1109/ESTC.2010.5642814

  22. Palaniappan, A., Palermo, S.: Power efficiency comparisons of interchip optical interconnect architectures. IEEE Trans. Circuits Syst. II Express Br. 57(5), 343–347 (2010). doi:10.1109/TCSII.2010.2047319

    Article  Google Scholar 

  23. Pepeljugoski, P., Kash, J., Doany, F., Kuchta, D., Schares, L., Schow, C., Taubenblatt, M., Offrein, B., Benner, A.: Towards exaflop servers and supercomputers: the roadmap for lower power and higher density optical interconnects. In: 36th European Conference and Exhibition on Optical Communication (ECOC), pp. 1–14. IBM (2010). doi:10.1109/ECOC.2010.5621097

  24. Pinguet, T., Analui, B., Balmater, E., Guckenberger, D., Harrison, M., Koumans, R., Kucharski, D., Liang, Y., Masini, G., Mekis, A., Mirsaidi, S., Narasimha, A., Peterson, M., Rines, D., Sadagopan, V., Sahni, S., Sleboda, T., Song, D., Wang, Y., Welch, B., Witzens, J., Yao, J., Abdalla, S., Gloeckner, S., De Dobbelaere, P., Capellini, G.: Monolithically integrated high-speed CMOS photonic transceivers. In: 5th IEEE International Conference on Group IV Photonics, pp. 362–364. Luxtera (2008). doi:10.1109/GROUP4.2008.4638200

  25. Roelkens, G., Vermeulen, D., Van Laere, F., Selvaraja, S., Scheerlinck, S., Taillaert, D., Bogaerts, W., Dumon, P., Van Thourhout, D., Baets, R.: Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures. J. Nanosci. Nanotechnol. 10(3), 1551–1562 (2010). doi:10.1166/jnn.2010.2031

    Article  CAS  Google Scholar 

  26. Rolston, D., Varano, R.: Light on board-optical IC packaging. In: Photonics Society Summer Topical Meeting Series, IEEE, pp. 229–230. Reflex Photonics (2010). doi:10.1109/PHOSST.2010.5553698

  27. Roscher, H., Rinaldi, F., Michalzik, R.: Small-pitch Flip-Chip-bonded VCSEL arrays enabling transmitter redundancy and monitoring in 2-D 10-Gbit/s space-parallel fiber transmission. IEEE J. Sel. Top. Quantum Electron. 13(5), 1279–1289 (2007). doi:10.1109/JSTQE.2007.905150

    Article  CAS  Google Scholar 

  28. Schaub, J.D., Csutak, S.M., Yang, B., Campbell, J.C., Rogers, D.L., Yang, M., Kuchta, D.M., Zier, S.J., Sorna, M.: High-speed optical receivers in advanced silicon technologies. In: Lasers and Electro-Optics Society, 2002. LEOS 2002. The 15th Annual Meeting of the IEEE, vol. 2, pp. 772–773. IBM (2002). doi:10.1109/LEOS.2002.1159535

  29. Scheibenreif, J., Noble, B., Dallesasse, J.: Flexible substrate for routing fibers in an optical transceiver. US Patent 6974260, 13 Dec 2005

    Google Scholar 

  30. Schmid, G., Leeb, W., Langer, G., Schmidt, V., Houbertz, R.: Gbit/s transmission via two-photon-absorption-inscribed optical waveguides on printed circuit boards. Electron. Lett. 45(4), 219–221 (2009). doi:10.1049/el:20093661

    Article  Google Scholar 

  31. Schroder, H., Arndt-Staufenbiel, N., Brusberg, L.: “glasspack”—photonic packaging using thin glass foils for electrical-optical circuit boards (EOCB) and sensor modules. In: 2nd Electronics Systemintegration Technology Conference, pp. 1245–1250. FhG IZM, IEEE (2008). doi:10.1109/ESTC.2008.4684532

  32. Streppel, U., Dannberg, P., Waechter, C., Braeuer, A., Nicole, P., Froehlich, L., Houbertz, R., Popall, M.: Development of a new fabrication method for stacked optical waveguides using inorganic-organic copolymers. In: First International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, pp. 329–335 (2001). doi:10.1109/POLYTR.2001.973304

  33. Sun, H.B., Kawata, S.: Two-photon laser precision microfabrication and its applications to micro-nano devices and systems. J. Lightwave Technol. 21(3), 624–633 (2003). doi:10.1109/JLT.2003.809564

    Article  CAS  Google Scholar 

  34. Vlasov, Y.: Silicon photonics for next generation computing systems—tutorial. In: 34th European Conference on Optical Communication (ECOC), pp. 1–27 (2008)

    Google Scholar 

  35. Vlasov, Y., Green, W.M.J., Xia, F.: High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat. Photonics 2, 242–246 (2008). doi:10.1038/nphoton.2008.31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Rieske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rieske, R. (2012). Photonic System Integration of Optical Waveguides in MOEMS. In: Gerlach, G., Wolter, KJ. (eds) Bio and Nano Packaging Techniques for Electron Devices. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28522-6_27

Download citation

Publish with us

Policies and ethics