Skip to main content

DC Electrodes for Cell Applications

  • Chapter
  • First Online:
Bio and Nano Packaging Techniques for Electron Devices
  • 1788 Accesses

Abstract

DCMEAs are microelectrode arrays (MEAs) capable of measuring and application of direct currents. The need for these kind of devices arose from the discovery, that small endogenous dc currents play a big role in various biological processes, such as wound healing and embryonic development. In this chapter, one possible implementation of DCMEAs is presented. The first sections deal with the construction and physical characterisation of the DCMEA-chip. To demonstrate the new application possibilities, a biological experiment is described in which a DCMEA is used to study intracellular ion currents. Calvaria cells are cultivated on the chip and stimulated with a direct current. During the stimulation, ion concentration is monitored using real time fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apel, P.: Track etching technique in membrane technology. Radiat. Meas. 34(1–6), 559–566 (2001)

    Article  CAS  Google Scholar 

  2. Baaken, G., Sondermann, M., Schlemmer, C., Rühe, J., Behrends, J.C.: Planar microelectrode-cavity array for high-resolution and parallel electrical recording of membrane ionic currents. Lab Chip 8(6), 938–944 (2008)

    Article  CAS  Google Scholar 

  3. Bogdanski, N., Wissen, M., Möllenbeck, S., Scheer, H.C.: Thermal imprint with negligibly low residual layer. J. Vac. Sci. Technol. B 24, 2998 (2006)

    Google Scholar 

  4. Brown, M.J., Loew, L.M.: Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent. J. Cell Biol. 127(1), 117 (1994)

    Article  CAS  Google Scholar 

  5. Chang, P.C., Sulik, G.I., Soong, H.K., Parkinson, W.C.: Galvanotropic and galvanotaxic responses of corneal endothelial cells. J. Formos. Med. Assoc. 95(8), 623 (1996)

    CAS  Google Scholar 

  6. Derix, J., Gerlach, G., Perike, S., Wetzel, S., Funk, R.W.H.: Biocompatible DC-microelectrode array. In: 2nd Electronics Systemintegration Technology Conference (ESTC), pp. 441–446 (2008)

    Google Scholar 

  7. Derix, J., Gerlach, G., Wetzel, S., Perike, S., Funk, R.W.H.: Porous polyethylene terephthalate membranes in microfluidic applications. Phys. Status Solidi A 206(3), 442–448 (2009)

    Article  CAS  Google Scholar 

  8. Eddings, M.A., Johnson, M.A., Gale, B.K.: Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. J. Micromech. Microeng. 18(6) (2008).

    Google Scholar 

  9. Farboud, B., Nuccitelli, R., Schwab, I.R., Isseroff, R.R.: DC electric fields induce rapid directional migration in cultured human corneal epithelial cells. Exp. Eye Res. 70(5), 667–673 (2000)

    Article  CAS  Google Scholar 

  10. Fox, M.B., Esveld, D.C., Valero, A., Luttge, R., Mastwijk, H.C., Bartels, P.V., Van Den Berg, A., Boom, R.M.: Electroporation of cells in microfluidic devices: a review. Anal. Bioanal. Chem. 385(3), 474–485 (2006)

    Article  CAS  Google Scholar 

  11. Fromherz, P.: Electrical interfacing of nerve cells and semiconductor chips. ChemPhysChem 3(3), 276 (2002)

    Article  CAS  Google Scholar 

  12. Funk, R.H.W., Monsees, T., özkucur, N.: Electromagnetic effects-from cell biology to medicine. Prog. Histochem. Cytochem. 43(4), 177–264 (2009)

    Article  Google Scholar 

  13. Gast, F.U., Dittrich, P.S., Schwille, P., Weigel, M., Mertig, M., Opitz, J., Queitsch, U., Diez, S., Lincoln, B., Wottawah, F., et al.: The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology. Microfluid. Nanofluid. 2(1), 21–36 (2006)

    Article  CAS  Google Scholar 

  14. Hamerli, P., Weigel, T., Groth, T., Paul, D.: Surface properties of and cell adhesion onto allylamine-plasma-coated polyethylenterephtalat membranes. Biomaterials 24(22), 3989–3999 (2003)

    Article  CAS  Google Scholar 

  15. Hinkle, L.: The direction of groth of differentiating neurones and myoblasts from frag embryos in an applied electric field. J. Physiol. 314, 121–135 (1981)

    CAS  Google Scholar 

  16. Hynes, R.O.: Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69(1), 11–25 (1992)

    Article  CAS  Google Scholar 

  17. Jay, D.G.: Role of band 3 in homeostasis and cell shape. Cell 86(6), 853–854 (1996)

    Article  CAS  Google Scholar 

  18. Karba, R., Semrov, D., Vodovnik, L., Benko, H., Savrin, R.: DC electrical stimulation for chronic wound healing enhancement Part 1. Clinical study and determination of electrical field distribution in the numerical wound model. Bioelectrochem. Bioenerg. 43(2), 256–70 (1997)

    Article  Google Scholar 

  19. McCaig, C.D., Rajnicek, A.M., Song, B., Zhao, M.: Controlling cell behavior electrically: current views and future potential. Physiol. Rev. 85(3), 943 (2005)

    Article  Google Scholar 

  20. McCreery, D.B., Agnew, W.F., Yuen, T.G.H., Bullara, L.A.: Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes. Ann. Biomed. Eng. 16(5), 463–481 (1988)

    Article  CAS  Google Scholar 

  21. Monsees, T.K., Barth, K., Tippelt, S., Heidel, K., Gorbunov, A., Pompe, W., Funk, R.H.W.: Effects of different titanium alloys and nanosize surface patterning on adhesion, differentiation, and orientation of osteoblast-like cells. Cells Tissues Organs 180(2), 81–95 (2005)

    Article  Google Scholar 

  22. Nordström, T., Rotstein, O.D., Romanek, R., Asotra, S., Heersche, J.N.M., Manolson, M.F., Brisseau, G.F., Grinstein, S.: Regulation of cytoplasmic pH in osteoclasts. J. Biol. Chem. 270(5), 2203 (1995)

    Article  Google Scholar 

  23. Nuccitelli, R.: Endogenous electric fields in embryos during development, regeneration and wound healing. Radiat. Prot. Dosim. 106(4), 375 (2003)

    Article  CAS  Google Scholar 

  24. özkucur, N., Monsees, T., Perike, S., Do, H.Q., Funk, R.H.W.: Local calcium elevation and cell elongation initiate guided motility in electrically stimulated osteoblast-like cells. PLoS One 4(7) (2009)

    Google Scholar 

  25. Phelan, M.C.: Basic techniques in mammalian cell tissue culture. Curr. Protoc. Cell. Biol. 36, 1.1.1–1.1.18 (2007)

    Google Scholar 

  26. Ramos-Vara, J.A.: Technical aspects of immunohistochemistry. Veterinary Pathology Online 42(4), 405 (2005)

    Article  CAS  Google Scholar 

  27. Reid, B., Nuccitelli, R., Zhao, M.: Non-invasive measurement of bioelectric currents with a vibrating probe. Nat. Protoc. 2(3), 661–669 (2007)

    Article  CAS  Google Scholar 

  28. Rolland, J.P., Hagberg, E.C., Denison, G.M., Carter, K.R., DeSimone, J.M.: High-resolution soft lithography: enabling materials for nanotechnologies. Angew. Chem. Int. Ed. 43(43), 5796–5799 (2004)

    Article  CAS  Google Scholar 

  29. Sarkadi, B., Parker, J.C.: Activation of ion transport pathways by changes in cell volume. Biochim. Biophys. Acta. Rev. Biomembr. 1071(4), 407–427 (1991)

    Google Scholar 

  30. Sawada, S., Masuda, Y., Zhu, P., Koumoto, K.: Micropatterning of copper on a poly (ethylene terephthalate) substrate modified with a self-assembled monolayer. Langmuir 22(1), 332–337 (2006)

    Article  CAS  Google Scholar 

  31. Takahashi, K., Itoh, A., Nakamura, T., Tachibana, K.: Radical kinetics for polymer film deposition in fluorocarbon (\({\rm C}_4{\rm F}_8\), \({\rm C}_3{\rm F}_6\) and \({\rm C}_5{\rm F}_8\)) plasmas. Thin Solid Films 374(2), 303–310 (2000)

    Article  CAS  Google Scholar 

  32. Unger, M.A., Chou, H.P., Thorsen, T., Scherer, A., Quake, S.R.: Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463), 113 (2000)

    Article  CAS  Google Scholar 

  33. Vanhaesebroeck, B.: Charging the batteries to heal wounds through PI3K. Nat. Chem. Biol. 2(9), 453–455 (2006)

    Article  CAS  Google Scholar 

  34. Wang, H.Y., Lu, C.: Electroporation of mammalian cells in a microfluidic channel with geometric variation. Anal. Chem. 78(14), 5158–5164 (2006)

    Article  CAS  Google Scholar 

  35. Waxman, S.G., Dib-Hajj, S., Cummins, T.R., Black, J.A.: Sodium channels and their genes: dynamic expression in the normal nervous system, dysregulation in disease states. Brain Res. 886(1–2), 5–14 (2000)

    Article  CAS  Google Scholar 

  36. Zhao, M., Pu, J., Forrester, J.V., McCaig, C.D.: Membrane lipids, EGF receptors, and intracellular signals colocalize and are polarized in epithelial cells moving directionally in a physiological electric field. FASEB J. 16(8), 857–859 (2002)

    Google Scholar 

  37. Zhao, M., Song, B., Pu, J., Wada, T., Reid, B., Tai, G., Wang, F., Guo, A., Walczysko, P., Gu, Y., et al.: Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-and PTEN. Nature 442, 457–460 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Derix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Derix, J., Perike, S. (2012). DC Electrodes for Cell Applications. In: Gerlach, G., Wolter, KJ. (eds) Bio and Nano Packaging Techniques for Electron Devices. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28522-6_23

Download citation

Publish with us

Policies and ethics