Skip to main content

Introduction: Dynamics of an Individual Charged Particle

  • Chapter
  • First Online:
Book cover Dynamics of Charged Particulate Systems

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 544 Accesses

Abstract

We start with an introduction to the dynamics of a single charged particle, and then progress to rigid clusters, and then flowing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This field generates helical motion in three dimensions when \(\varvec{E}^{ext}\ne \mathbf{ 0}\).

References

  1. Behringer, R. P. (1993). The dynamics of flowing sand. Nonlinear Science Today, 3, 1.

    Article  Google Scholar 

  2. Behringer, R. P., & Baxter, G. W. (1993). Pattern formation, complexity and time-dependence in granular flows. In A. Mehta (Ed.), Granular matter–an interdisciplinary approach (pp. 85–119). New York: Springer.

    Google Scholar 

  3. Behringer, R. P., & Miller, B. J. (1997). Stress fluctuations for sheared 3D granular materials. In Behringer, R., Jenkins, J., (Eds.), Proceedings, powders and grains (97 pp. 333–336). Balkema.

    Google Scholar 

  4. Behringer, R. P., Howell, D., & Veje, C. (1999). Fluctuations in granular flows. Chaos, 9, 559–572.

    Article  MATH  Google Scholar 

  5. Berezin, Y. A., Hutter, K., & Spodareva, L. A. (1998). Stability properties of shallow granular flows. International Journal of Nonlinear Mechanics, 33(4), 647–658.

    Article  MathSciNet  MATH  Google Scholar 

  6. Donev, A., Cisse, I., Sachs, D., Variano, E. A., Stillinger, F., Connelly, R., et al. (2004). Improving the density of jammed disordered packings using ellipsoids. Science, 303, 990–993.

    Article  Google Scholar 

  7. Donev, A., Stillinger, F. H., Chaikin, P. M., & Torquato, S. (2004). Unusually dense crystal ellipsoid packings. Physics Review Letter, 92, 255506.

    Article  Google Scholar 

  8. Donev, A., Torquato, S., & Stillinger, F. (2005). Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles-I. Algorithmic details. Journal of Computer Physics, 202, 737.

    Article  MathSciNet  MATH  Google Scholar 

  9. Donev, A., Torquato, S., & Stillinger, F. (2005). Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles-II. Application to ellipses and ellipsoids. Journal of Computer. Physics, 202, 765.

    MathSciNet  MATH  Google Scholar 

  10. Donev, A., Torquato, S., & Stillinger, F. H. (2005). Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings. Physics Review E, 71, 011105.

    Article  MathSciNet  Google Scholar 

  11. Duran, J. (1997). Sands, powders and grains. An introduction to the physics of granular matter. New York: Springer.

    Google Scholar 

  12. Frenklach, M., & Carmer, C. S. (1999). Molecular dynamics using combined quantum and empirical forces: Application to surface reactions. Advances in Classical Trajectory Methods, 4, 27–63.

    Google Scholar 

  13. Gray, J. M. N. T. (2001). Granular flow in partially filled slowly rotating drums. Journal of Fluid Mechanics, 441, 1–29.

    Article  MathSciNet  MATH  Google Scholar 

  14. Gray, J. M. N. T., & Hutter, K. (1997). Pattern formation in granular avalanches. CMT, 9, 341–345.

    Article  Google Scholar 

  15. Gray, J. M. N. T., Wieland, M., & Hutter, K. (1999). Gravity-driven free surface flow of granular avalanches over complex basal topography. Proceedings of the Royal Society of London, A, 455, 1841–1874.

    Article  MathSciNet  MATH  Google Scholar 

  16. Greve, R., & Hutter, K. (1993). Motion of a granular avalanche in a convex and concave curved chute: Experiments and theoretical predictions. Philos Trans R Soc London A, 342, 573–600.

    Article  Google Scholar 

  17. Haile, J. M. (1992). Molecular dynamics simulations: Elementary methods. New York: Wiley.

    Google Scholar 

  18. Hase, W. L. (1999). Molecular dynamics of clusters, surfaces, liquids and interfaces. In W. L. Hase (Ed.), Advances in classical trajectory methods (Vol. 4). Stamford: JAI Press.

    Google Scholar 

  19. Hashin, Z. (1983). Analysis of composite materials: A survey. ASME Journal of Applied Mechanics, 50, 481–505.

    Article  MATH  Google Scholar 

  20. Hutter, K. (1996). Avalanche dynamics. In V. P. Singh (Ed.), Hydrology of disasters (pp. 317–394). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  21. Hutter, K., & Rajagopal, K. R. (1994). On flows of granular materials. CMT, 6, 81–139.

    Article  MathSciNet  MATH  Google Scholar 

  22. Hutter, K., Siegel, M., Savage, S. B., & Nohguchi, Y. (1993). Two-dimensional spreading of a granular avalanche down an inclined plane. Part I: Theory. Acta Mechanica, 100, 37–68.

    Article  MathSciNet  MATH  Google Scholar 

  23. Hutter, K., Koch, T., Plüss, C., & Savage, S. B. (1995). The dynamics of avalanches of granular materials from initiation to runout. Part II. Experiments. Acta Mechanica, 109, 127–165.

    Article  MathSciNet  Google Scholar 

  24. Jackson, J. D. (1998). Classical electrodynamics (3rd ed.). New York: Wiley.

    Google Scholar 

  25. Jaeger, H. M., & Nagel, S. R. (1992). La Physique de l’Etat Granulaire. La Recherche, 249, 1380.

    Google Scholar 

  26. Jaeger, H. M., & Nagel, S. R. (1992). Physics of the granular state. Science, 255, 1523.

    Article  Google Scholar 

  27. Jaeger, H. M., & Nagel, S. R. (1993). La Fisica del Estado granular. Mundo Cientifico, 132, 108.

    Google Scholar 

  28. Jaeger, H. M., & Nagel, S. R. (1997). Dynamics of granular material. American Scientist, 85, 540.

    Google Scholar 

  29. Jaeger, H. M., Knight, J. B., Liu, C. H., & Nagel, S. R. (1994). What is shaking in the sand box? Materials Research Society Bulletin, 19, 25.

    Google Scholar 

  30. Jaeger, H. M., Nagel, S. R., & Behringer, R. P. (1996). The physics of granular materials. Physics Today, 4, 32.

    Article  Google Scholar 

  31. Jaeger, H. M., Nagel, S. R., & Behringer, R. P. (1996). Granular solids, liquids and gases. Reviews of Modern Physics, 68, 1259.

    Article  Google Scholar 

  32. Jenkins, J. T., & Koenders, M. A. (2004). The incremental response of random aggregates of identical round particles. European Physical Journal E - Soft Matter, 13, 113–123.

    Article  Google Scholar 

  33. Jenkins, J. T., & La Ragione, L. (1999). Particle spin in anisotropic granular materials. International Journal of Solids and Structures, 38, 1063–1069.

    Article  Google Scholar 

  34. Jenkins, J. T., & Strack, O. D. L. (1993). Mean-field inelastic behavior of random arrays of identical spheres. JoMMS, 16, 25–33.

    Google Scholar 

  35. Jenkins, J. T., Johnson, D., La Ragione, L., & Makse, H. (2005). Fluctuations and the effective moduli of an isotropic, random aggregate of identical, frictionless spheres. Journal of the Mechanics and Physics of Solids, 197–225.

    Google Scholar 

  36. Kansaal, A., Torquato, S., & Stillinger, F. (2002). Diversity of order and densities in jammed hard-particle packings. Physics Review E, 66, 041109.

    Article  Google Scholar 

  37. Koch, T., Greve, R., & Hutter, K. (1994). Unconfined flow of granular avalanches along a partly curved surface. II. Experiments and numerical computations. Proceedings of the Royal Society London, A, 445, 415–435.

    Article  MATH  Google Scholar 

  38. Liu, C. H., & Nagel, S. R. (1993). Sound in a granular material: Disorder and nonlinearity. Physics Review B, 48, 15646.

    Article  Google Scholar 

  39. Liu, C. H., Jaeger, H. M., & Nagel, S. R. (1991). Finite size effects in a Sandpile. Physics Review A, 43, 7091.

    Article  Google Scholar 

  40. Moelwyn-Hughes, E. A. (1961). Physical Chemistry. New York: Pergamon.

    Google Scholar 

  41. Mura, T. (1993). Micromechanics of defects in solids (2nd ed.). Kluwer Academic Publishers.

    Google Scholar 

  42. Nagel, S. R. (1992). Instabilities in a Sandpile. Reviews of Modern Physics, 64, 321.

    Article  Google Scholar 

  43. Nemat-Nasser, S., & Hori, M. (1999). Micromechanics: overall properties of heterogeneous solids (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  44. Pöschel, T., & Schwager, T. (2004). Computational granular dynamics. New York: Springer.

    Google Scholar 

  45. Rapaport, D. C. (1995). The art of molecular dynamics simulation. Cambridge: Cambridge University Press.

    Google Scholar 

  46. Schlick, T. (2000). Molecular modeling and simulation: An interdisciplinary guide. New York: Springer.

    Google Scholar 

  47. Stillinger, F. H., & Weber, T. A. (1985). Computer simulation of local order in condensed phases of silicon. Physical Review B, 31, 5262–5271.

    Article  Google Scholar 

  48. Tai, Y.-C., Gray, J. M. N. T., Hutter, K., & Noelle, S. (2001). Flow of dense avalanches past obstructions. Annals of Glaciology, 32, 281–284.

    Article  Google Scholar 

  49. Tai, Y.-C., Noelle, S., Gray, J. M. N. T., & Hutter, K. (2001). An accurate shock-capturing finite-difference method to solve the Savage-Hutter equations in avalanche dynamics. Annals of Glaciology, 32, 263–267.

    Article  Google Scholar 

  50. Tai, Y.-C., Noelle, S., Gray, J. M. N. T., & Hutter, K. (2002). Shock capturing and front tracking methods for granular avalanches. Journal of Computer Physics, 175, 269–301.

    Article  MATH  Google Scholar 

  51. Tersoff, J. (1988). Empirical interatomic potential for carbon, with applications to amorphous carbon. Physical Review Letter, 61, 2879–2882.

    Article  Google Scholar 

  52. Torquato, S. (2002). Random Heterogeneous Materials: Microstructure and Macroscopic Properties. New York: Springer.

    MATH  Google Scholar 

  53. Wieland, M., Gray, J. M. N. T., & Hutter, K. (1999). Channelized free-surface flow of cohesionless granular avalanches in a chute with shallow lateral curvature. Journal of Fluid Mechanics, 392, 73–100.

    Article  MATH  Google Scholar 

  54. Zohdi, T. I., & Wriggers, P. (2008). Introduction to computational micromechanics, second Reprinting. Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Zohdi, T.I. (2012). Introduction: Dynamics of an Individual Charged Particle. In: Dynamics of Charged Particulate Systems. SpringerBriefs in Applied Sciences and Technology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28519-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28519-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28518-9

  • Online ISBN: 978-3-642-28519-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics