Skip to main content

Auxiliary Properties of Evolution Inclusions Solutions for Earth Data Processing

  • Chapter
  • First Online:
Evolution Inclusions and Variation Inequalities for Earth Data Processing III

Abstract

A great number of collectives of mathematicians, mechanicians, geophysicists (mainly theorists), engineers goes in for qualitative investigation of nonlinear mathematical models of evolution processes and fields of different nature, in particular, problems deal with the dynamics of solutions of non-stationary problems. Far from complete list of results concern the given direction is in works [4, 5, 7, 9–17, 19].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    That is, V is a real reflexive separable Banach space embedded into a real Hilbert space H continuously and densely, H is identified with its conjugated space H  ∗ , V  ∗  is a dual space to V. So, we have such chain of continuous and dense embeddings: \(V \subset H \equiv {H}^{{\ast}}\subset {V }^{{\ast}}\) (see, for example, [42]).

References

  1. Adler J (1966) Chemotaxis in bacteria. Science 153:708–716

    Google Scholar 

  2. Aubin JP, Frankowska H (1990) Set-valued analysis. Birkh\(\mathrm{\ddot{a}}\)user, Boston

    Google Scholar 

  3. Aubin JP, Sellina A (1984) Set-valued analysis and viability theory. Springer, Berlin

    Google Scholar 

  4. Ball JM (1997) Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations. J Nonlinear Sci. doi:10.1007/s003329900037

    Google Scholar 

  5. Ball JM (2004) Global attaractors for damped semilinear wave equations. DCDS 10:31–52

    Google Scholar 

  6. Balibrea F, Caraballo T, Kloeden PE, Valero J (2010) Recent developments in dynamical systems: three perspectives. Int J Bifurcation Chaos. doi:10.1142/S0218127410027246

    Google Scholar 

  7. Berg HC, Turner L (1990) Chemotaxis in bacteria in glass capillary. Biophys J 58:919–930

    Google Scholar 

  8. Budyko MI (1969) The effects of solar radiation variations on the climate of the Earth. Tellus 21:611–619

    Google Scholar 

  9. Chepyzhov VV, Vishik MI (1997) Evolution equations and their trajectory attractors. J Math Pures Appl. doi:10.1016/S0021-7824(97)89978–3

    Google Scholar 

  10. Chepyzhov VV, Vishik MI (2010) Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete Contin Dyn Syst. doi:10.3934/dcds.2010.27.1493

    Google Scholar 

  11. Chueshov ID (1993) Global attractors for non-linear problems of mathematical physics. Russ Math Surv. doi:10.1070/RM1993v048n03ABEH001033

    Google Scholar 

  12. Clarke FH (1983) Optimization and nonsmooth analysis. Wiley Interscience, New York

    Google Scholar 

  13. Dalquist FW, Lovely P, Koshland DE (1991) Quantitative analysis of bacterial migration in chemotaxis. Nature New Biol. 236:120–123

    Google Scholar 

  14. Dubinskii YuA (1991) High order nonlinear parabolic equations. J Math Sci. doi:10.1007/BF01097353

    Google Scholar 

  15. Duvaut G, Lions JL (1972) Les Inequations en Mecanique et en Physique. Dunod, Paris

    Google Scholar 

  16. Gajewski H, Gr\(\mathrm{\ddot{o}}\)ger K, Zacharias K (1974) Nichtlineare operatorgleichungen und operatordifferentialgleichungen. Akademie, Berlin

    Google Scholar 

  17. Goeleven D, Miettinen M, Panagiotopoulos PD (1999) Dynamic hemivariational inequalities and their applications. J Optim Theor Appl. doi:10.1023/A:1021783924105

    Google Scholar 

  18. Kasyanov PO (2011) Multivalued dynamics of solutions of an autonomous differential-operator inclusion with pseudomonotone nonlinearity. Cybernet Syst Anal 47(5):800–811. doi: 10.1007/s10559-011-9359-6

    Google Scholar 

  19. Kasyanov PO, Mel’nik VS, Toscano S (2010) Solutions of Cauchy and periodic problems for evolution inclusions with multi-valued \({w}_{{\lambda }_{0}}\)-pseudomonotone maps. J Differ Equat. doi:10.1016/j.jde.2010.05.008

    Google Scholar 

  20. Kuttler K (2000) Non-degenerate implicit evolution inclusions. Electron J Differ Equat 34: 1–20

    Google Scholar 

  21. Ladyzhenskaya OA (1961) Mathematical problems of the dynamics of viscous incompressible fluids [in Russian]. Fizmatgiz, Moscow

    Google Scholar 

  22. Lions JL (1969) Quelques methodes de resolution des problemes aux limites non lineaires. Dunod Gauthier-Villars, Paris

    Google Scholar 

  23. Liu Z, Mig\(\mathrm{\acute{o}}\)rski S (2008) Noncoercive damping in dynamic hemivariational inequality with application to problem of piezoelectricity. Discrete Contin Dyn Syst Ser B. doi:10.3934/dcdsb.2008.9.129

    Google Scholar 

  24. Melnik VS, Valero J (1998) On attractors of multivalued semi-flows and differential inclusions. Set-Valued Anal. doi:10.1023/A:1008608431399

    Google Scholar 

  25. Mig\(\mathrm{\acute{o}}\)rski S (2005) Boundary hemivariational inequalities of hyperbolic type and applications. J Global Optim. doi:10.1007/s10898-004-7021-9

    Google Scholar 

  26. Mig\(\mathrm{\acute{o}}\)rski S, Ochal A (2000) Optimal control of parabolic hemivariational inequalities. J Global Optim. doi:10.1023/A:1026555014562

    Google Scholar 

  27. Murray JD (1989) Mathematical biology. Springer, Berlin

    Google Scholar 

  28. Naniewicz Z, Panagiotopoulos PD (1995) Mathematical theory of hemivariational inequalities and applications. Marcel Dekker, New York

    Google Scholar 

  29. Osaki K, Tsujikawa T, Yagi A, Mimura M (2002) Exponential attractor for chemotaxis-growth system of equations. Nonlinear Anal 51:119–144

    Google Scholar 

  30. Panagiotopoulos PD (1985) Inequality problems in mechanics and applications. Convex and nonconvex energy functions. Birkhauser, Basel

    Google Scholar 

  31. Panagiotopoulos PD (1995) Hemivariational inequalities and Fan-variational inequalities. New applications and results. Atti Sem Mat Fis Univ Modena XLIII:159–191

    Google Scholar 

  32. Sell GR, You Yu (2002) Dynamics of evolutionary equations. Springer, New York

    Google Scholar 

  33. Temam R (1988) Infinite-dimensional dynamical systems in mechanics and physics. Springer, New York

    Google Scholar 

  34. Tolstonogov AA (1992) Solutions of evolution inclusions I. Siberian Math J. doi: 10.1007/BF00970899

    Google Scholar 

  35. Tolstonogov AA, Umanskii YaI (1992) On solutions of evolution inclusions. II. Siberian Math J. doi:10.1007/BF00971135

    Google Scholar 

  36. Valero J, Kapustyan AV (2006) On the connectedness and asymptotic behaviour of solutions of reaction diffusion systems. J Math Anal Appl. doi:10.1016/j.jmaa.2005.10.042

    Google Scholar 

  37. Vishik M, Chepyzhov VV (2002) Trajectory and global attractors of three-dimensional Navier-Stokes systems. Math Notes. doi:10.1023/A:1014190629738

    Google Scholar 

  38. Zadoyanchuk NV, Kas’yanov PO (2009) Faedo-Galerkin method for second-order evolution inclusions with W λ-pseudomonotone mappings. Ukrainian Math J. doi:10.1007/s11253-009-0207-z

    Google Scholar 

  39. Zadoyanchuk NV, Kasyanov PO (2010) Analysis and control of second-order differential-operator inclusions with +-coercive damping. Cyberne Syst Anal. doi:10.1007/s10559-010-9208-z

    Google Scholar 

  40. Zadoyanchuk NV, Kasyanov PO (2012) Dynamics of solutions for the class of second order autonomous evolution inclusions. Cybernet Syst Anal 48(3):344–366

    Google Scholar 

  41. Zgurovsky MZ, Mel’nik VS, Kasyanov PO (2010) Evolution inclusions and variation inequalities for Earth data processing I. Springer, Heidelberg. doi:10.1007/978-3-642-13837-9

  42. Zgurovsky MZ, Mel’nik VS, Kasyanov PO (2010) Evolution inclusions and variation inequalities for Earth data processing II. Springer, Heidelberg. doi:10.1007/978-3-642-13878-2

  43. Zgurovsky MZ, Kasyanov PO, Zadoianchuk NV (Zadoyanchuk). Long-time behavior of solutions for quasilinear hyperbolic hemivariational inequalities with application to piezoelectricity problem. Applied Nathematics Letters. http://dx.doi.org/10.1016/j.aml.2012.01.016. Accessed 31 Jan 2012

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zgurovsky, M.Z., Kasyanov, P.O., Kapustyan, O.V., Valero, J., Zadoianchuk, N.V. (2012). Auxiliary Properties of Evolution Inclusions Solutions for Earth Data Processing. In: Evolution Inclusions and Variation Inequalities for Earth Data Processing III. Advances in Mechanics and Mathematics, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28512-7_2

Download citation

Publish with us

Policies and ethics