Advertisement

Recommender Systems and the Social Web

  • Amit Tiroshi
  • Tsvi Kuflik
  • Judy Kay
  • Bob Kummerfeld
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7138)

Abstract

In the past, classic recommender systems relied solely on the user models they were able to construct by themselves and suffered from the “cold start” problem. Recent decade advances, among them internet connectivity and data sharing, now enable them to bootstrap their user models from external sources such as user modeling servers or other recommender systems. However, this approach has only been demonstrated by research prototypes. Recent developments have brought a new source for bootstrapping recommender systems: social web services. The variety of social web services, each with its unique user model characteristics, could aid bootstrapping recommender systems in different ways. In this paper we propose a mapping of how each of the classical user modeling approaches can benefit from nowadays active services’ user models, and also supply an example of a possible application.

Keywords

User Modeling Social Web Services Recommender Systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Resnick, P., Varian, H.: Recommender systems. Commun. ACM 40(3), 56–58 (1997)CrossRefGoogle Scholar
  2. 2.
    Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative Filtering Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Pazzani, M.J., Billsus, D.: Content-Based Recommendation Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Smyth, B.: Case-Based Recommendation. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 342–376. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Burke, R.: Hybrid Web Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.): Adaptive Web 2007. LNCS, vol. 4321. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  7. 7.
    Webb, G., Pazzani, M., Billsus, D.: Machine Learning for User Modeling. User Modeling and User-Adapted Interaction 11(1), 19–29 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press/Addison-Wesley (1999)Google Scholar
  9. 9.
    Rocchio, J.: Relevance feedback in information retrieval, pp. 313–323. Prentice-Hall, Englewood Cliffs (1971)Google Scholar
  10. 10.
    Duda, R., Hart, P.: Pattern Classification and Scene Analysis. John Wiley & Sons Inc. (1973)Google Scholar
  11. 11.
    Nguyen, Q.N., Cavada, D., Ricci, F.: Trip@ dvice Mobile Extension of a Casebased Travel Recommender System (2003)Google Scholar
  12. 12.
    Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., Sartin, M.: Combining Content-Based and Collaborative Filters in an Online Newspaper (1999)Google Scholar
  13. 13.
    Hoschka, P.: CSCW research at GMD-FIT: from basic groupware to the social Web. SIGGROUP Bull. 19, 5–9 (1998)CrossRefGoogle Scholar
  14. 14.
    Liu, H., Maes, P., Davenport, G.: Unraveling the taste fabric of social networks. International Journal on Semantic Web and Information Systems 2(1), 42–71 (2006)CrossRefGoogle Scholar
  15. 15.
    Kyriacou, E., et al.: Enriching Lifelong User Modelling with the Social e-Networking and e-Commerce" Pieces of the Puzzle" (2009)Google Scholar
  16. 16.
    Berkovsky, S., Kuflik, T., Ricci, F.: Mediation of user models for enhanced personalization in recommender systems. User Modeling and User-Adapted Interaction 18(3), 245–286 (2008)CrossRefGoogle Scholar
  17. 17.
    Pang, B., Lee, L.: Opinion Mining and Sentiment Analysis. Found. Trends Inf. Retr. 2(1-2), 1–135 (2008)CrossRefGoogle Scholar
  18. 18.
    Goldberg, D., Nichols, D., Oki, B., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)CrossRefGoogle Scholar
  19. 19.
    Guy, I., Zwerdling, N., Ronen, I., Carmel, D., Uziel, E.: Social media recommendation based on people and tags. In: Proceeding of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA, pp. 194–201 (2010)Google Scholar
  20. 20.
    Abel, F., Henze, N., Herder, E., Krause, D.: Linkage, aggregation, alignment and enrichment of public user profiles with Mypes, pp. 11:1–11:8 (2010) Google Scholar
  21. 21.
    Carmagnola, F., Cena, F., Gena, C.: User model interoperability: a survey. In: User Modeling and User-Adapted Interaction, pp. 1–47Google Scholar
  22. 22.
    Facebook: Statistics. In: Facebook, http://www.facebook.com/press/info.php?statistics (accessed October 22, 2011)
  23. 23.
    Kuflik, T., Sheidin, J., Jbara, S., Goren-Bar, D., Soffer, P., Stock, O., Zancanaro, M.: Supporting small groups in the museum by context-aware communication services. In: IUI, pp. 305–308 (2007)Google Scholar
  24. 24.
    Kuflik, T., Stock, O., Zancanaro, M., Gorfinkel, A., Jbara, S., Kats, S., Sheidin, J., Kashtan, N.: A visitor’s guide in an active museum: Presentations, communications, and reflection. J. Comput. Cult. Herit. 3(3), 11–11 (2011)CrossRefGoogle Scholar
  25. 25.
    Bright, A., Kay, J., Ler, D., Ngo, K., Niu, W., Nuguid, A.: Adaptively Recommending Museum Tours. In: Proceedings of the UbiComp 2005 Workshop on Smart Environments and their Applications to Cultural Heritage (2005)Google Scholar
  26. 26.
    Zancanaro, M., Kuflik, T., Boger, Z., Goren-Bar, D., Goldwasser, D.: Analyzing Museum Visitors’ Behavior Patterns. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 238–246. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Stock, O., Zancanaro, M., Busetta, P., Callaway, C., Krüger, A., Kruppa, M., Kuflik, T., Not, E., Rocchi, C.: Adaptive, intelligent presentation of information for the museum visitor in PEACH. User Modeling and User-Adapted Interaction 17, 257–304 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Amit Tiroshi
    • 1
  • Tsvi Kuflik
    • 1
  • Judy Kay
    • 2
  • Bob Kummerfeld
    • 2
  1. 1.University of HaifaIsrael
  2. 2.School of Information TechnologiesUniversity of SydneyAustralia

Personalised recommendations