Skip to main content

Theoretical and Experimental Fractionation Between Species with Different Oxidation States

  • Chapter
  • 1197 Accesses

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

After it had become clear that equilibrium fractionation between chemical phases containing different hydrogen isotopes could be both theoretically and experimentally determined with perfect agreement (Urey and Rittenberg in J Chem Phys 1:137–143, 1933; Rittenberg and Urey in J Amer Chem Soc 56:1885–1889, 1934; Rittenberg et al. in J Chem Phys 2:48–49, 1934) interest in the equilibria between isotopes of the other light elements also grew.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ader M, Coleman ML, Doyle SP, Stroud M, Wakelin D (2001) Methods for the stable isotopic analysis of chlorine in chlorate and perchlorate compounds. Anal Chem 73:4946–4950

    Article  Google Scholar 

  • Ader M, Chaudhuri S, Coates JD, Coleman M (2008) Microbial perchlorate reduction: a precise laboratory determination of the chlorine isotope fractionation and its possible biochemical basis. Earth Planet Sci Lett 269:604–612

    Article  Google Scholar 

  • Brejneva N, Roginsky S, Schilinsky A (1936) Methodology of the introduction of radioactive halogens to organic molecules. Acta Physicochemical URSS 7:549–574

    Google Scholar 

  • Bruce RA, Achenbach LA, Coates JD (1999) Reduction of (per)chlorate by a novel organism isolated from a paper mill waste. Environ Microbiol 1:319–331

    Article  Google Scholar 

  • Coates JD, Michaelidou U, Bruce RA, O’Connor SM, Crespi JN, Achenbach LA (1999) The ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl Environ Microbiol 65:5234–5241

    Article  Google Scholar 

  • Coleman ML, Ader M, Chaudhuri S, Coates JD (2003) Microbial isotopic fractionation of perchlorate chlorine. Appl Environ Microbiol 69:4997–5000

    Article  Google Scholar 

  • Czarnacki M, Hałas S (2012) Isotope fractionation in aqua-gas systems: Cl2–HCl–Cl–, Br 2-HBr–Br- and H2S–S2–. Isot Environ Health Stud 48:55–64

    Article  Google Scholar 

  • Dodgen HW, Libby WF (1949) The exchange reaction between the hydrogen halides and the halogens in the gaseous state. J Chem Phys 17:951–957

    Article  Google Scholar 

  • Ericksen GE (1981) Geology and origin of the Chilean nitrate deposits. USGS Prof Paper 1188:37 pp

    Google Scholar 

  • Giunta T, Labadi J, Eggenkamp HGM (2013) Experimental determination of chlorine isotope fractionation in Cl2\({{\text{Cl}}^{ - } }_{\text{aq}}\) and ClOHaq\({{\text{Cl}}^{ - } }_{\text{aq}}\). In: 23th annual V.M. Goldschmidt conference. Firenze, Italy

    Google Scholar 

  • Hoering TC, Parker PL (1961) The geochemistry of the stable isotopes of chlorine. Geochim Cosmochim Acta 23:186–199

    Article  Google Scholar 

  • Johnston WH, Libby WF (1951) The exchange reaction between hydrogen chloride and chlorine in the gaseous state. J Amer Chem Soc 73:854–855

    Article  Google Scholar 

  • Libby WF (1940) Mechanism of the exchange reaction between gaseous bromine and hydrogen bromide. J Chem Phys 8:348

    Article  Google Scholar 

  • Liberatore LC, Wiig EO (1940) Exchange reaction of gaseous bromine and hydrogen bromide. J Chem Phys 8:165–170

    Article  Google Scholar 

  • Malmqvist A, Welander T, Moore E, Ternstrom A, Molin G, Stenstrom IM (1994) Ideonella dechloratans gen. nov., sp. nov., a new bacterium capable of growing anaerobically with chlorate as an electron acceptor. Syst Appl Microbiol 17:58–64

    Article  Google Scholar 

  • Michaelidou U, Achenbach LA, Coates JD (2000) Isolation and characterization of two novel (per)chlorate-reducing bacteria from swine waste lagoons. In: Urbansky ED (ed) Perchlorate in the environment. Kluwer Academic/Plenum, New York, pp 271–283

    Chapter  Google Scholar 

  • Richet P, Bottinga Y, Javoy M (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope fractionation among gaseous molecules. Ann Rev Earth Planet Sci 5:65–110

    Article  Google Scholar 

  • Rikken G, Kroon A, Van Ginkel C (1996) Transformation of (per)chlorate into chloride by a newly isolated bacterium: reduction and dismutation. Appl Microbiol Biotechnol 45:420–426

    Article  Google Scholar 

  • Rittenberg D, Urey HC (1934) The thermal decomposition of deuterium iodide. J Amer Chem Soc 56:1885–1889

    Article  Google Scholar 

  • Rittenberg D, Bleakney W, Urey HC (1934) The equilibrium between the three hydrogens. J Chem Phys 2:48–49

    Article  Google Scholar 

  • Romanenko VI, Korenkov VN, Kuznetsov SI (1976) Bacterial decomposition of ammonium perchlorate. Mikrobiologiia 45:204–209

    Google Scholar 

  • Schauble EA, Rossman GR, Taylor HP (2003) Theoretical estimates of equilibrium chlorine-isotope fractionations. Geochim Cosmochim Acta 67:3267–3281

    Article  Google Scholar 

  • Stepanyuk V, Smirnova G, Klyushnikova T, Kanyuk N, Panchenko L, Nogina T, Prima V (1992) New species of the Acinetobacter genus Acinetobacter thermotoleranticus sp. nov. Microbiology 61:347–356

    Google Scholar 

  • Sturchio NC, Hatzinger PB, Arkins MD, Suh C, Heraty LJ (2003) Chlorine isotope fractionation during microbial reduction of perchlorate. Environ Sci Technol 37:3859–3863

    Article  Google Scholar 

  • Sturchio NC, Böhlke JK, Beloso AD Jr, Streger SH, Heraty LJ, Hatzinger PB (2007) Oxygen and chlorine isotopic fractionation during perchlorate biodegradation: laboratory results and implications for forensics and natural attenuation studies. Environ Sci Technol 41:2796–2802

    Article  Google Scholar 

  • Urbansky ET (1998) Perchlorate chemistry: implications for analysis and remediation. Bioremediat J 2:81–95

    Article  Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 1947:562–581

    Article  Google Scholar 

  • Urey HC, Greiff LJ (1935) Isotope exchange equilibria. J Chem Soc Amer 57:321–327

    Article  Google Scholar 

  • Urey HC, Rittenberg D (1933) Some thermodynamic properties of the H1H2, H2H2 molecules and compounds containing the H2 atom. J Chem Phys 1:137–143

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Eggenkamp .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eggenkamp, H. (2014). Theoretical and Experimental Fractionation Between Species with Different Oxidation States. In: The Geochemistry of Stable Chlorine and Bromine Isotopes. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28506-6_8

Download citation

Publish with us

Policies and ethics