Skip to main content

Preparation Techniques for the Analysis of Stable Chlorine Isotopes

  • Chapter
The Geochemistry of Stable Chlorine and Bromine Isotopes

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

Before the development of “modern” isotope ratio mass spectrometers (Nier in Rev Sci Inst 18:398–411, 1947; McKinney et al. in Rev Sci Inst 21:724–730, 1950) stable isotope ratios and variations in these ratios were measured by techniques such as gravimetric determination (e.g. Richards and Wells in J Amer Chem Soc 27:459–529, 1905; Curie in Compte Rend Sean 172:1025–1028, 1921) and mass spectrography (Aston in Phil Mag 42:140–144, 1921, Proc R Soc Lond A 132:487–498, 1931; Von Kallman and Lasareff in Z Phys 80:237–241, 1932; Nier and Hanson in Phys Rev 50:722–726, 1936).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ader M, Coleman ML, Doyle SP, Stroud M, Wakelin D (2001) Methods for the stable isotopic analysis of chlorine in chlorate and perchlorate compounds. Anal Chem 73:4946–4950

    Article  Google Scholar 

  • Aeppli C, Holmstrand H, Andersson P, Gustafsson Ö (2010) Direct compound-specific stable chlorine isotope analysis of organic compounds with quadrupole GC/MS using standard isotope bracketing. Anal Chem 82:420–426

    Google Scholar 

  • Aston FW (1919a) The constitution of the elements. Nature 104:393

    Google Scholar 

  • Aston FW (1919b) A positive ray spectrograph. Philos Mag 38:707–714

    Google Scholar 

  • Aston FW (1920) The mass spectra of the chemical elements. Phil Mag 39:611–625

    Google Scholar 

  • Aston FW (1921) The mass spectra of the chemical elements—Part 3. Phil Mag 42:140–144

    Google Scholar 

  • Aston FW (1925) Photographic plates for the detection of mass rays. Math Proc Cambridge Phil Soc 22:548–554

    Google Scholar 

  • Aston FW (1931) The isotopic constitution and atomic weights of selenium, bromine, boron, tungsten, antimony, osmium, ruthenium, tellurium, germanium, rhenium and chlorine. Proc R Soc Lond A 132:487–498

    Google Scholar 

  • Bao H, Gu B (2004) Natural perchlorate has its unique oxygen isotope signature. Environ Sci Technol 38:5073–5077

    Google Scholar 

  • Barnes JD, Selverstone J, Sharp ZD (2006) Chlorine isotope chemistry of serpentinites from Elba, Italy, as an indicator of fluid source and subsequent tectonic history. Geochem Geophys Geosys 7 Article number Q08015

    Google Scholar 

  • Bartholomew RM, Brown F, Lounsbury M (1954) Chlorine isotope effect in reactions of tert-butyl chloride. Canadian J Chem 32:979–983

    Google Scholar 

  • Behne W (1953) Untersuchungen zur Geochemie des Chlor und Brom. Geochim Cosmochim Acta 3:186–214

    Google Scholar 

  • Bernstein A, Shouakar-Stash O, Ebert K, Laskov C, Hunkeler D, Jeannottat S, Sakaguchi-Söder K, Laaks J, Jochmann MA, Cretnik S, Jager J, Haderlein SB, Schmidt TC, Aravena R, Elsner M (2011) Compound-specific chlorine isotope analysis: a comparison of gas chromatography/isotope ratio mass spectrometry and gas chromatography/quadrupole mass spectrometry methods in an interlaboratory study. Anal Chem 83:7624–7634

    Google Scholar 

  • Blatt AH (1943) Organic synthesis, Col vol II. Wiley, New York, p 251

    Google Scholar 

  • Böhlke JK, Sturchio NC, Gu B, Horita J, Brown GM, Jackson WA, Batista JR, Hatzinger PB (2005) Perchlorate isotope forensics. Anal Chem 77:7838–7842

    Google Scholar 

  • Bonifacie M, Jendrzejewski N, Agrinier P, Coleman M, Pineau F, Javoy M (2007). Pyrohydrolysis-IRMS determination of silicate chlorine stable isotope compositions. Application to oceanic crust and meteorite samples. Chem Geol 242:187–201

    Google Scholar 

  • Bonifacie M, Jendrzejewski N, Agrinier P, Humler E, Coleman M, Javoy M (2008) The chlorine isotope composition of earth’s mantle. Science 319:1518–1520

    Google Scholar 

  • Boutton TW, Wong WW, Hachey DL, Lee LS, Cabrera MP, Klein PD (1983) Comparison of quartz and pyrex tubes for combustion of organic samples for stable carbon isotope analysis. Anal Chem 55:1832–1833

    Google Scholar 

  • Brown F, Gillies A, Stevens WH (1953) A note on the preparation of chlorine gas containing 36Cl. Can J Chem 31–768

    Google Scholar 

  • Callis E L, Abernathey RM (1991) High-precision analyses of uranium and plutonium by total sample volatilization and signal integration. Int J Mass Spectrom Ion Proc 103:93–105

    Google Scholar 

  • Catling DC, Clair MW, Zahnle KJ, Quinn RC, Clarc BC, Hecht MH, Kounaves SP (2010) Atmospheric origins of perchlorate on Mars and in the Atacama. J Geophys Res 115:E00E11. doi:10.1029/2009JE003425

  • Curie I (1921) Sur le poids atomique du chlore dans quelques mineraux. Compte Rend Sean 172:1025–1028

    Google Scholar 

  • De Groot PA (2004) Handbook of stable isotope analytical techniques, vol I. Elsevier, Amsterdam

    Google Scholar 

  • Desaulniers DE, Kaufmann RS, Cherry JA, Bentley HW (1986) 37Cl- 35Cl variations in a diffusion controlled groundwater system. Geochim Cosmochim Acta 50:1757–1764

    Google Scholar 

  • Dorenfeldt M (1922) Relative determination of the atomic weight of chlorine in Bamle apatite. J Amer Chem Soc 45:1577–1579

    Google Scholar 

  • Dreibus C, Spettel B, Wänke H (1979) Halogens in meteorites and their primordial abundances. In: Ahrens LH (ed) Origin and distribution of the elements, vol 34. Pergamon Press, Oxford, pp 33–38

    Google Scholar 

  • Eastoe CJ, Guilbert JM, Kaufmann RS (1989) Preliminary evidence for fractionation of stable chlorine isotopes in ore forming hydrothermal systems. Geology 17:285–288

    Google Scholar 

  • Eggenkamp HGM (1994) δ37Cl; the geochemistry of chlorine isotopes. Geol Ultrai 116:1–150 (Thesis Utrecht University)

    Google Scholar 

  • Eggenkamp HGM (2004) Summary of methods for determining the stable isotope composition of chlorine and bromine in natural materials. In: de Groot PA (ed) Handbook of stable isotope analytical techniques, Chapter 28. Elsevier, Amsterdam, pp 604–622

    Google Scholar 

  • Eggenkamp HGM, Schuiling RD (1995) δ37Cl variations in selected minerals: a possible tool for exploration. J Geochem Expl 55:249–255

    Google Scholar 

  • Eggenkamp HGM, Koster van Groos AF (1997) Chlorine stable isotopes in carbonatites: evidence for isotopic heterogeneity in the mantle. Chem Geol 140:137–143

    Google Scholar 

  • Eggenkamp HGM, Kreulen R, Koster van Groos AF (1995) Chlorine stable isotope fractionation in evaporites. Geochim Cosmochim Acta 59:5169–5175

    Google Scholar 

  • Elsner M, Hunkeler D (2008) Evaluating chlorine isotope effects from isotope ratios and mass spectra of polychlorinated molecules. Anal Chem 80:4731–4740

    Google Scholar 

  • Ericksen GE (1981) Geology and origin of the Chilean nitrate deposits. USGS professional paper 1188, p 37

    Google Scholar 

  • Fietzke J, Frische M, Hansteen TH, Eisenhauer A (2008) A simplified procedure for the determination of stable chlorine isotope ratios (δ37Cl) using LA-MC-ICP-MS. J Anal Atom Spectrom 23:769–772

    Google Scholar 

  • Fujitani T, Nakamura N (2006) Determination of chlorine in nine rock reference materials by isotope dilution mass spectrometry. Geostd Geoanl Res 30:113–120

    Google Scholar 

  • Fujitani T, Yamashita K, Numata M, Kanazawa N, Nakamura N (2010) Measurement of chlorine stable isotopic composition by negative thermal ionization mass spectrometry using total evaporation technique. Geochem J 44:241–246

    Google Scholar 

  • Gan YQ, Yu TT, Zhou AG, Liu YD, Liu CF (2013) A Technique for Carbon and Chlorine isotope analyses of chlorinated aliphatic hydrocarbons in groundwater. J Earth Sci 24:274–281

    Google Scholar 

  • Gaudette HE (1990) Chlorine and boron isotopic analyses of Antarctic ice and snow: indicators of marine and volcanic atmospheric inputs. Geol Soc Amer Ann Meeting 1990:173

    Google Scholar 

  • Gleditsch E, Samdahl B (1922) Radioactivité sur le poids atomique de chlore dans un mineral ancien, l’apatede Balme. Compte Rend Sean 174:746–748

    Google Scholar 

  • Godon A (2000) La subduction des Petites Antilles: apports de la géochimie isotopique du chlore. PhD thesis, Paris VII University, p 300 (Abstract in English)

    Google Scholar 

  • Godon A, Jendrzejewski N, Eggenkamp HGM, Banks DA, Ader M, Coleman ML, Pineau F (2004a) A cross calibration of chlorine isotopic measurements and suitability of seawater as the international reference material. Chem Geol 207:1–12

    Google Scholar 

  • Godon A (2000) La subduction des Petites Antilles: apports de la géochimie isotopique du chlore. PhD thesis, Paris VII Univ. 300 pp (In French with abstract in English)

    Google Scholar 

  • Godon A, Webster JD, Layne GD, Pineau F (2004b) Secondary ion mass spectrometry for the determination of δ37Cl. Part II. Intercalibration of SIMS and IRMS for aluminosilicate glasses. Chem Geol 207:291–303

    Google Scholar 

  • Gu B, Brown GM, Maya L, Lance MJ, Moyer BA (2001) Regeneration of perchlorate (ClO4 )-loaded anion exchange resins by novel tetrachloroferrate (FeCl4 ) displacement technique. Environ Sci Technol 35:3363–3368

    Google Scholar 

  • Gu B, Brown GM, Chiang CC (2007) Treatment of perchlorate contaminated groundwater using highly selective, regenerable ion-exchange technologies. Environ Sci Technol 41:6277–6282

    Google Scholar 

  • Gu B, Böhlke JK, Sturchio NC, Hatzinger PB, Jackson WA, Beloso AD Jr, Heraty LJ, Bian Y, Brown GM (2011) Removal, recovery and fingerprinting of perchlorate by ion exchange processes. In: SenGupta AK (ed) Ion exchange and solvent extraction: a series of advances, vol 20. CRC Press, Boca Raton

    Google Scholar 

  • Halas S, Pelc A (2009) New isotope ratio mass spectrometric method of precise δ37Cl determinations. Rapid Commun Mass Spectrom 23:1061–1064

    Google Scholar 

  • Harkins WD, Stone SB (1926) The isotopic composition and atomic weight of chlorine from meteorites and from minerals of non-marine origin. J Amer Chem Soc 48:938–949

    Google Scholar 

  • Hauri E, Wang J, Dixon JE, King PE, Mandeville C, Newman S (2000) SIMS analysis of volatiles in silicate glasses: 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol 183:99–114

    Google Scholar 

  • Hecht MH, Kounaves SP, Quinn RC, West SJ, Young SMM, Ming DW, Catling DC, Clark BC, Boynton WV, Hoffman J, DeFlores LP, Gospodinova K, Kapit J, Smith PH (2009) Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander site. Science 325:64–67

    Google Scholar 

  • Herzog W, Dörnenburg E (1958) Die Verwendung van Methylchlorid zur massenspektrometrichen Isotopenanalyse von Chlor. Z Naturforschg 13a:51–52

    Google Scholar 

  • Herzog W, Klemm A (1958) Die Temperaturabhängigkeit des Isotopie-Effekts bei der elektrolytischen Wanderungen der Chlorionen in herschmolzenem Thallium(I)-chlorid. Z Naturforschg 13a:7–16

    Google Scholar 

  • Hill JW, Fry A. (1962) Chlorine isotope effects in the reactions of benzyl and substituted benzyl chlorides with various nucleophiles. J Amer Chem Soc 84:2763–2769

    Google Scholar 

  • Hintze C (1915) Handbuch der Mineralogie. Verlag von Veit & Comp. Leipzig

    Google Scholar 

  • Hitzfeld KL, Gehre M, Richnow HH (2011) A novel online approach to the determination of isotopic ratios for organically bound chlorine, bromine and sulphur. Rapid Commun Mass Spectrom 25:3114–3122

    Google Scholar 

  • Hoering TC, Parker PL (1961) The geochemistry of the stable isotopes of chlorine. Geochim Cosmochim Acta 23:186–199

    Google Scholar 

  • Holmstrand H, Andersson P, Gustafsson Ö (2004) Chlorine isotope analysis of submicromole organochlorine samples by sealed tube combustion and thermal ionization mass spectrometry. Anal. Chem. 76:2336–2342

    Google Scholar 

  • Holt BD, Sturchio NC, Abrajano TA, Heraty LJ (1997) Conversion of chlorinated volatile organic compounds to carbon dioxide and methyl chloride for isotopic analysis of carbon and chlorine. Anal Chem 69:2727–2733

    Google Scholar 

  • Holt BD, Heraty LJ, Sturchio NC (2001) Extraction of chlorinated aliphatic hydrocarbons from groundwater at micromolar concentrations for isotopic analysis of chlorine. Environ Poll 113:263–269

    Google Scholar 

  • Howald RA (1960) Ion pairs. I. Isotope effects shown by chloride solutions in glacial acetic acid. J Amer Chem Soc 82:20–24

    Google Scholar 

  • Jackson WA, Anandam SK, Anderson T, Lehman T, Rainwater K, Rajagopalan S, Ridley M, Tock R (2005) Perchlorate occurrence in the Texas southern high plains aquifer system. Ground Water Monit Rem 25:137–149

    Google Scholar 

  • Jendrzejewski N, Eggenkamp HGM, Coleman ML (1997) Sequential determination of chlorine and carbon isotopic composition in single microliter samples of chlorinated solvent. Anal Chem 69:4259–4266

    Google Scholar 

  • Jin B, Laskov C, Rolle M, Haderlein SB (2011) Chlorine isotope analysis of organic contaminants using GCqMS: method optimization and comparison of different evaluation schemes. Environ Sci Technol 45:5279–5286

    Google Scholar 

  • Joan M, Reedy JH (1940) The detection of oxy-halogen anions. Trans Illinois State Acad Sci 33:123–125

    Google Scholar 

  • Johnston WH, Arnold JR (1953) The existence of multiply charged molecular ions of HBr, HCl, and DCl. J Chem Phys 21:1499–1502

    Google Scholar 

  • Kaufmann RS (1984) Chlorine in groundwater: Stable isotope distribution. Ph.D. thesis, University of Arizona, Tucson, Ariz

    Google Scholar 

  • Kaufmann RS, Long A, Bentley H, Davis S (1984) Natural chlorine isotope variations. Nature 309:338–340

    Google Scholar 

  • Keller J, Krafft M (1990) Effusive natrocarbonatite activity of Oldoinyo Lengai, June 1988. Bull Volcanol 52:629–645

    Google Scholar 

  • Klemm A, Lundén A (1955) Isotopenanreicherung beim Chlor durch electrolytische Überfürung in geschmolzenem Bleichlorid. Z. Naturforschg. 10A:282–284

    Google Scholar 

  • Kohnen MEL (1988) Stabiele chloorisotopen onderzoek. Internal report, University of Utrecht, p 17

    Google Scholar 

  • Kounaves SP, Stroble ST, Anderson RM, Moore Q, Catling DC, Douglas S, McKay CP, Ming DW, Smith PH, Tamppari LK, Zent AP (2010) Discovery of natural perchlorate in the Antarctic Dry Valleys and its global implications. Environ Sci Technol 44:2360–2364

    Google Scholar 

  • Kuroda PK, Sandell EB (1953) Chlorine in igneous rocks. Bull Geol Soc Amer 64:879–896

    Google Scholar 

  • Kusakabe M (2005) A closed pentane trap for separation of SO2 from CO2 for precise δ18O and δ34S measurements. Geochem J 39:285–287

    Google Scholar 

  • Langvad T (1954) Separation of chlorine isotopes by ion-exchange chromatography. Acta Chem Scand 8:526–527

    Google Scholar 

  • Layne GD, Godon A, Webster JD, Bach W (2004) Secondary ion mass spectrometry for the determination of δ37Cl. Part I. Ion microprobe analysis of gasses and fluids. Chem Geol 207:277–289

    Google Scholar 

  • Liggett LM (1954) Determination of organic halogen with sodium biphenyl reagent. Anal Chem 26:748–750

    Google Scholar 

  • Liu WG, Xiao YK, Wang QZ, Qi HP, Wang YH, Zhou YM, Shirodkar PV (1997) Chlorine isotopic geochemistry of salt lakes in the Qaidam Basin, China. Chem Geol 136:271–279

    Google Scholar 

  • Liu YD, Zhou AG, Gan YQ, Liu CF, Yu TT, Li XQ (2013) An online method to determine chlorine stable isotope composition by continuous flow isotope ratio mass spectrometry (CF-IRMS) coupled with a Gasbench II. J South Centr Univ 20:193–198

    Google Scholar 

  • Long A, Eastoe CJ, Kaufmann RS, Martin JG, Wirt L, Finley JB (1993) High-precision measurement of chlorine stable isotope ratios. Geochim Cosmochim Acta 57:2907–2912

    Google Scholar 

  • Lundén A, Herzog W. (1956) Isotopenanreicherung bei Chlor durch electrolytische Überführung in geschmolzenem Zinkchlorid. Z Naturforschg 11a:520

    Google Scholar 

  • Madorsky SL, Strauss S (1947) Concentration of isotopes of chlorine by the counter-current electromigration method. J Res Nat Bur Stand 38:185–189

    Google Scholar 

  • Magenheim AJ, Spivack AJ, Volpe C, Ransom B (1994) Precise determination of stable chlorine isotopic ratios in low-concentration natural samples. Geochim Cosmochim Acta 58:3117–3121

    Google Scholar 

  • McIlvaine TC (1921) A buffer solution for colorimetric comparison. J Biol Chem 49:183–186

    Google Scholar 

  • McKinney CR, McCrea JM, Epstein S, Allen HA, Urey HC (1950) Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. Rev Sci Inst 21:724–730

    Google Scholar 

  • Ming DW, Smith PH, Tamppari LK, Zent AP (2010) Discovery of natural perchlorate in the Antarctic Dry Valleys and its global implications. Environ Sci Technol 44:2360–2364

    Google Scholar 

  • Musashi M, Markl G, Kreulen R (1998) Stable chlorine-isotope analysis of rock samples: new aspects of chlorine extraction. Anal Chem Acta 362:261–269

    Google Scholar 

  • Musashi M, Eggenkamp HGM, Van Cappellen PH (2010) Experiment on chlorine extraction from chlorinated pollutants by supercritical water and their Cl isotope analysis. Bull Sc Technol Shibaura Inst Technol 54:57–61 (In Japanese with English abstract)

    Google Scholar 

  • Nešković OM, Veljković MV, Veličković SR, Derić AJ, Miljević NR, Golobočanin DD (2002) Precise measurement of chlorine isotopes by thermal ionization mass spectrometry. Nukleonika. 1(Supp 47):s85–s87

    Google Scholar 

  • Nier AO (1947) A mass spectrometer for isotope and gas analysis. Rev Sci Inst 18:398–411

    Google Scholar 

  • Nier AO (1955) Determination of isotopic masses and abundances by mass spectrometry. Science 121:737–744

    Google Scholar 

  • Nier AO, Hanson EE (1936) A mass-spectrographic analysis of the ions produced in HCl under electron impact. Phys Rev 50:722–726

    Google Scholar 

  • Nier AO, Ney EP, Inghram MG (1946) A null method for the comparison of two ion currents in a mass spectrometer. Phys Rev 70:116–117

    Google Scholar 

  • Numata M, Nakamura N, Gamo T (2001) Precise measurement of chlorine stable isotopic ratios by thermal ionization mass spectrometry. Geochem J 35:89–100

    Google Scholar 

  • Owen HR, Schaeffer OA (1955) The isotope abundances of chlorine from various sources. J Amer Chem Soc 77:898–899

    Google Scholar 

  • Parker DR, Seyfferth AL, Reese BK (2008) Perchlorate in groundwater: a synoptic survey of “pristine” sites in the conterminous Unites States. Environ Sci Technol 42:1465–1471

    Google Scholar 

  • Pelc A, Halas S (2008) Negative ion source for chlorine isotope ratio measurements. Rapid Commun Mass Spectrom 22:3977–3982

    Google Scholar 

  • Plummer LN, Böhlke JK, Doughten MW (2006) Perchlorate in Pleistocene and Holocene groundwater in north-central New Mexico. Environ Sci Technol 40:1757–1763

    Google Scholar 

  • Rajagopalan S, Anderson TA, Fahlquist L, Rainwater KA, Ridley M, Jackson WA (2006) Widespread presence of naturally occurring perchlorate in high plains of Texas and New Mexico. Environ Sci Technol 40:3156–3162

    Google Scholar 

  • Rajagopalan S, Anderson TA, Cox S, Harvey G, Cheng Q, Jackson WA (2009) Perchlorate in wet deposition across North America. Environ Sci Technol 43:616–622

    Google Scholar 

  • Rao B, Anderson TA, Orris GJ, Rainwater KA, Rajagopalan S, Sandvig RM, Scanlon BR, Stonestrom DA, Walvoord MA, Jackson WA (2007) Widespread natural perchlorate in unsaturated zones of the Southwest United States. Environ Sci Technol 41:4522–4528

    Google Scholar 

  • Rees CE (1978) Sulphur isotope measurements using SO2 and SF6. Geochim Cosmochim Acta 42:383–389

    Google Scholar 

  • Richards TW, Wells RC (1905) A revision of the atomic weights of sodium and chlorine. J Amer Chem Soc. 27:459–529

    Google Scholar 

  • Rosenbaum JM, Cliff RA, Coleman M.L. (2000) Chlorine stable isotopes: a comparison of dual inlet and thermal ionization mass spectrometric measurements. Anal Chem 72:2261–2264

    Google Scholar 

  • Sakaguchi-Söder KA (2010) New method for compound-specific stable chlorine isotope analysis: basics and application. PhD thesis, Technische Universität, Darmstadt, Germany

    Google Scholar 

  • Sakaguchi-Söder K, Jager J, Grund H, Matthäus F, Schüth C (2007) Monitoring and evaluation of dechlorination processes using compound-specific chlorine isotope analysis. Rapid Commun Mass Spectrom 21:3077–3084

    Google Scholar 

  • Schnetger B, Muramatsu Y (1996) Determination of halogens, with special reference to, iodine, in geological and biological samples using pyrohydrolysis for preparation and inductively coupled plasma mass spectrometry and ion chromatography for measurement. Analyst 121:1627–1631

    Google Scholar 

  • Sharp ZD, Barnes JD, Brearly AJ, Chaussidon M, Fisher TP, Kamenetsky VS (2007) Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature 446:1062–1065

    Google Scholar 

  • Shields WR, Murphy TJ, Garner EL, Dibeler VH (1962) Absolute isotopic abundance ratios and the isotopic weight of chlorine. J Amer Chem Soc 84:1519–1522

    Google Scholar 

  • Shirodkar PV, Xiao YK, Sarkar A, Dalal SG, Chivas AR (2006) Influence of air-sea fluxes on chlorine isotopic composition of ocean water: Implications for constancy in δ37Cl—a statistical inference. Environ Intern 32:235–239

    Google Scholar 

  • Shouakar-Stash O, Drimmie RJ, Frape SK (2005) Determination of inorganic chlorine stable isotopes by continuous flow isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 19:121–127

    Google Scholar 

  • Shouakar-Stash O, Drimmie RJ, Zhang M, Frape SK (2006) Compound-specific chlorine isotope ratios of TCE, PCE and DCE isomers by direct injection using CF-IRMS. Appl Geoch 21:766–781

    Google Scholar 

  • Stull DR (1947) Vapour pressure of pure substances. Inorganic compounds. Ind Eng Chem 39:540–550

    Google Scholar 

  • Sturchio NC, Hatzinger PB, Arkins MD, Suh C, Heraty LJ (2003) Chlorine isotope fractionation during microbial reduction of perchlorate. Environ Sci Technol 37:3859–3863

    Google Scholar 

  • Sturchio NC, Böhlke JK, Gu B, Horita J, Brown GM, Beloso AD Jr, Hatzinger PB, Jackson WA, Batista JR (2006) Stable isotopic compositions of chlorine and oxygen in synthetic and natural perchlorates. In: Gu B, Coates JD (eds) Perchlorate environmental occurrences, interactions, and treatment. Springer, New York, pp 93–109

    Google Scholar 

  • Sturchio NC, Böhlke JK, Beloso AD Jr, Streger SH, Heraty LJ, Hatzinger PB (2007) Oxygen and chlorine isotopic fractionation during perchlorate biodegradation: laboratory results and implications for forensics and natural attenuation studies. Environ Sci Technol 41:2796–2802

    Google Scholar 

  • Sturchio NC, Böhlke JK, Gu BH, Hatzinger PB, Jackson WA (2011) Isotopic tracing of perchlorate in the environment. In: M Baskaran (ed) Handbook of environmental isotope geochemistry, advances in isotope geochemistry. Springer, Berlin Heidelberg

    Google Scholar 

  • Suzuki K, Miyata Y, Kanazawa N (2004) Precise Re isotope ratio measurements by negative thermal ionization mass spectrometry (NTI-MS) using total evaporation technique. Int J Mass Spectrom 235:97–101

    Google Scholar 

  • Tanaka N, Rye DM (1991) Chlorine in the stratosphere. Nature 353:707

    Google Scholar 

  • Taylor JW, Grimsrud EP (1969) Chlorine isotopic ratios by negative ion mass spectrometry. Anal Chem 41:805–810

    Google Scholar 

  • Thornton B, Horst A, Carrizo D, Holmstrand H, Andersson P, Crill PM, Gustafsson Ö (2013) A high-volume cryosampler and sample purification system for bromine isotope studies of methyl bromide. J Atmos Ocean Techn 30:2095–2107

    Google Scholar 

  • Turnquist CR, Taylor JW, Grimsrud EP, Williams RC (1973) Temperature dependence of chlorine kinetic isotope effects for aliphatic chlorides. J Amer Chem Soc 95:4133–4138

    Google Scholar 

  • Van Acker MRMD, Shahar A, Young ED, Coleman ML (2006) GC/multiple collector-ICPMS method for chlorine stable isotope analysis of chlorinated aliphatic hydrocarbons. Anal Chem 78:4663–4667

    Google Scholar 

  • Van Warmerdam EM, Frape SK, Aravena R, Drimmie RJ, Flatt H, Cherry JA (1995) Stable chlorine and carbon isotope measurements of selected chlorinated organic solvents. Appl Geochem 10:547–552

    Google Scholar 

  • Vengosh A, Chivas AR, McCulloch MT (1989) Direct determination of boron and chlorine isotopic compositions in geological materials by negative thermal-ionization mass spectrometry. Chem Geol (Isot Geosci Sect) 79:333–343

    Google Scholar 

  • Vogel AI (1951) A textbook of quantitative inorganic analysis, theory and practice. Longmans, Green and Co., London, p 918

    Google Scholar 

  • Vogel AI (1989) A textbook of quantitative inorganic analysis, theory and practice, 5th ed.; revised by Jeffrey GH et al. Longmans, Green and Co., London

    Google Scholar 

  • Volpe C, Spivack AJ (1994) Stable chlorine isotopic composition of marine aerosol-particles in the Western Atlantic Ocean. Geophys Res Letters 21:1161–1164

    Google Scholar 

  • Von Kallman H, Lasareff W (1932) Über die Isotopenuntersuchungen (Sauerstoff, Neon und Chlor). Z Phys 80:237–241

    Google Scholar 

  • Von Rothmund V (1909) Concerning the reduction and determination of perchlorate. Z Anorg Chem 62:108–113

    Google Scholar 

  • Wakaki S, Shibata S, Tanaka T (2007) Isotope ratio measurements of trace Nd by the total evaporation normalization (TEN) method in thermal ionization mass spectrometry. Int J Mass Specrrom 264:157–163

    Google Scholar 

  • Wassenaar LI, Koehler G. (2004) On-line technique for the determination of the δ37Cl of inorganic and total organic Cl in Environmental Samples. Anal Chem 76:6384–6388

    Google Scholar 

  • Westaway KC, Koerner T, Fang YR, Rudziñski J, Paneth P (1998) A new method of determining chlorine kinetic isotope effects. Anal Chem 70:3548–3552

    Google Scholar 

  • Whitehead D, Thomas JE (1985) Use a nebulizer in pyrohydrolytic decomposition of silicate materials for determination of fluorine and chlorine. Anal Chem 57:2421–2423

    Google Scholar 

  • Wieser ME, Coplen TB (2010) Atomic weights of the elements 2009 (IUPAC technical report). Pure Appl Chem 83:359–396

    Google Scholar 

  • Williams RC, Taylor JW (1973) Chlorine kinetic isotope-effect models. 1. Isotopic dependence in nominal C-Cl stretching vibrations of aliphatic chlorides and vibrational analysis of tert-butyl chloride ground-state. J Amer Chem Soc 95:1710–1714

    Google Scholar 

  • Wu JH, Satake H (2006) Purification of CH3Cl from CH3I using cold trap with sealed 2,2,4-trimethylpentane for δ37Cl measurement. Anal Chim Acta 555:41–46

    Google Scholar 

  • Xiao YK, Zhang CG (1992) High precision isotopic measurement of chlorine by thermal ionization mass spectrometry of the Cs2Cl+ ion. Intl J Mass Spectrom Ion Proc 116:183–192

    Google Scholar 

  • Xiao YK, Beary ES, Fassett JD (1988) An improved method for the high-precision isotopic measurement of boron by thermal ionization mass-spectrometry. Intl J Mass Spectrom Ion Proc 85:203–213

    Google Scholar 

  • Xiao YK, Jin L, Qi HP (1991) Investigation of thermal ion emission characteristics of graphite. Intl J Mass Spectrom Ion Proc 107:205–213

    Google Scholar 

  • Xiao YK, Zhou YM, Liu WG (1995) Precise measurement of chlorine isotopes based on Cs2Cl+ by thermal ionization mass-spectrometry. Anal Lett 28:1295–1304

    Google Scholar 

  • Xiao YK, Zhou YM, Wang QZ. Wei HZ, Liu WG, Eastoe CJ (2002) A secondary isotopic reference material of chlorine from selected seawater. Chem Geol 182:655–661

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Eggenkamp .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eggenkamp, H. (2014). Preparation Techniques for the Analysis of Stable Chlorine Isotopes. In: The Geochemistry of Stable Chlorine and Bromine Isotopes. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28506-6_4

Download citation

Publish with us

Policies and ethics