Skip to main content

Note Symbol Recognition for Music Scores

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7197))

Abstract

Note symbol recognition plays a fundamental role in the process of an OMR system. In this paper, we propose new approaches for recognizing notes by extracting primitives and assembling them into constructed symbols. Firstly, we propose robust algorithms for extracting primitives (stems, noteheads and beams) based on Run-Length Encoding. Secondly, introduce the concept of interaction field to describe the relationship between primitives, and define six hierarchical categories for the structure of notes. Thirdly, propose an effective sequence to assemble the primitives into notes, guided by the mechanism of giving priority to the key structures. To evaluate the performance of those approaches,wepresent experimental results on real-life scores and comparisons with commercial systems. The results show our approaches can recognize notes with high-accuracy and powerful adaptability, especially for the complicated scores with high density of symbols.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ng, K.C., Boyle, R.D.: Recognition and reconstruction of primitives in music scores. Image and Vision Computing 14(1), 39–46 (1996)

    Article  Google Scholar 

  2. Blostein, D., Baird, H.S.: A Critical Survey of Music Image Analysis. In: Baird, H.S., Bunke, H., Yamamoto, K. (eds.) Structured Document Image Analysis, pp. 405–434. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  3. Bellini, P., Bruno, I., Nesi, P.: Optical Music Sheet Segmentation. In: Proceedings of the First International Conference on WEB Delivering of Music (WEDELMUSIC 2001), Florence, Italy, pp. 183–190 (2001)

    Google Scholar 

  4. Martin, P., Bellissant, C.: Low-level analysis of music drawings imags. In: Proceedings of the first International Conference on Document Analysis and Recognition (ICDAR 1991), Saint-Malo, France, pp. 417–425 (1991)

    Google Scholar 

  5. Carter, N., Bacon, R.: Automatic recognition of printed music. In: Baird, H.S., Bunke, H., Yamamoto, K. (eds.) Structured Document Image Analysis, pp. 456–465. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  6. Rossant, F., Bloch, I.: Robust and adaptive OMR system including fuzzy modeling, fusion of musical rules, and possible error detection. EURASIP Journal on Applied Signal Processing, 815–841 (2007)

    Google Scholar 

  7. Modayur, B.: Music score recognition – a selective attention approach using mathematical morphology. Technical Report, Electrical Engineering Department, University of Washington, Seattle (1996)

    Google Scholar 

  8. Szwoch, M.: Guido: a Musical Score Recognition System. In: Proceedings of the Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), Curitiba, Brasil, pp. 809–813 (2007)

    Google Scholar 

  9. Rebeto, A., Caplea, G., Cardoso, J.S.: Optical recognition of music symbols. International Journal on Document Analysis and Recognition 13, 19–31 (2010)

    Article  Google Scholar 

  10. Bainbridge, D., Bell, T.C.: A music notation construction engine for optical music recognition. Software-Practice & Experience 33(2), 173–200 (2003)

    Article  MATH  Google Scholar 

  11. Coüasnon, B., Brisset, P., Stephan, I.: Using logic programming languages for optical music recognition. In: International Conference on the Practical Application of Prolog (PAP 1995), Paris, France, pp. 115–134 (1995)

    Google Scholar 

  12. Fahmy, H.: A Graph-rewriting Papadigm for discrete relaxation: application to sheet-music recognition. International Journal of Pattern Recognition and Artificial Intelligence 12(6), 763–799 (1999)

    Article  Google Scholar 

  13. Fujinaga, I.: Staff Detection and Removal. In: George, S.E. (ed.) Visual Perception of Music Notation: On-Line and Off-Line Recognition, pp. 1–39. IRM Press, Idea Group Inc., Hershey (2004)

    Chapter  Google Scholar 

  14. Dalitz, C., Droettboom, M., Czerwinski, B., Fujigana, I.: A comparative study of staff removal algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(5), 753–766 (2008)

    Article  Google Scholar 

  15. Dalitz, C., Droettboom, M., Czerwinski, B., Fujigana, I.: Staff removal tookit for gamera, http://music-staves.sourceforge.net

  16. SmartScore X Pro Demo, http://www.musitek.com/smartscre.html

  17. SharpEye 2.68 Demo, http://www.visiv.co.uk/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, X. (2012). Note Symbol Recognition for Music Scores. In: Pan, JS., Chen, SM., Nguyen, N.T. (eds) Intelligent Information and Database Systems. ACIIDS 2012. Lecture Notes in Computer Science(), vol 7197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28490-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28490-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28489-2

  • Online ISBN: 978-3-642-28490-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics