Skip to main content

Grazers on Benthic Seaweeds

  • Chapter
  • First Online:
Seaweed Biology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 219))

Abstract

Grazing is a major force structuring seaweed communities. Grazer–seaweed interactions are ecologically complex with important implications for seaweed standing biomass and community composition, the energy flow through the system, and higher trophic level predator–prey interactions. This chapter presents a summary of the vast amount of information on herbivore–seaweed interactions, focusing on key concepts illustrated with select examples. Grazer–seaweed interactions are first discussed from the grazer perspective, starting with several common classification systems of grazers based on their feeding mode, size, and diet specificity. This chapter then covers how grazers can impact seaweeds and seaweed communities in multiple ways, including mutualistic relationships between herbivores and seaweeds. Algal–herbivore interactions are then considered from the seaweed perspective, specifically types of algal defenses against grazing, such grazing tolerance and avoidance of herbivores, as well as structural and chemical defenses. The chapter ends with a brief consideration of potential climate change effects on grazer–seaweed interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amsler CD (2008) Algal Chemical Ecology. Springer, Berlin, p xviii, 313

    Google Scholar 

  • Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91

    CAS  Google Scholar 

  • Amsler CD, Iken K, McClintock JB, Amsler MO, Peters KJ, Hubbard JM, Furrow FB, Baker BJ (2005) Comprehensive evaluation of the palatability and chemical defense of subtidal macroalgae from the Antarctic Peninsula. Mar Ecol Prog Ser 294:141–159

    CAS  Google Scholar 

  • Amsler CD, Amsler MO, McClintock JB, Baker BJ (2009) Filamentous algal endophytes in macrophytic Antarctic algae: prevalence in hosts and palatability to mesoherbivores. Phycologia 48:324–334

    Google Scholar 

  • Antoniadou C, Chintiroglou C (2006) Trophic relationships of polychaetes associated with different algal growth forms. Helgol Mar Res 60:39–49

    Google Scholar 

  • Arrontes J (1999) On the evolution of interactions between marine mesoherbivores and algae. Bot Mar 42:137–155

    Google Scholar 

  • Arrontes J, Arenas F, Fernandez C, Rico JM, Oliveros J, Martinez B, Viejo RM, Alvarez D (2004) Effects of grazing by limpets on mid-shore species assemblages in northern Spain. Mar Ecol Prog Ser 277:117–133

    Google Scholar 

  • Aumack CF, Amsler CD, McClintock JB, Baker BJ (2010) Chemically mediated resistance to mesoherbivory in finely branched macroalgae along the western Antarctic Peninsula. Eur J Phycol 45:19–26

    Google Scholar 

  • Bjorndal KA (1997) Foraging ecology and nutrition of sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC, Boca Raton, pp 199–232

    Google Scholar 

  • Boettcher AA, Targett NM (1993) Role of polyphenolic molecular size in reduction of assimilation efficiency in Xiphister mucosus. Ecology 74:891–903

    CAS  Google Scholar 

  • Bogen J, Bønsnes TE (2003) Erosion and sediment transport in high Arctic rivers, Svalbard. Polar Res 22:175–189

    Google Scholar 

  • Bonaldo RM, Bellwood DR (2010) Spatial variation in the effects of grazing on epilithic algal turfs on the Great barrier reef, Australia. Coral Reefs: DOI 10.1007/s00338-010-0704-4

  • Burkpile DE, Hay ME (2006) Herbivore vs. nutrient control of marine primary producers: context-dependent effects. Ecology 87:3128–3139

    Google Scholar 

  • Burkpile DE, Hay ME (2010) Impact of herbivore identity on algal succession and coral growth on a Caribbean reef. PLoS One 5(1):e8963

    Google Scholar 

  • Buschmann AH, Vergara PA (1993) Effects of rocky intertidal amphipods on algal recruitment: a field study. J Phycol 29:154–159

    Google Scholar 

  • Carpenter RC (1986) Partitioning herbivory and its effects on coral reef algal communities. Ecol Monogr 56:345–363

    Google Scholar 

  • Carpenter RC (1990) Mass mortality of Diadema antillarum I. Long-term effects on sea urchin population-dynamics and coral reef algal communities. Mar Biol 104:67–77

    Google Scholar 

  • Carpenter RC, Edmunds PJ (2006) Local and regional scale recovery of Diadema promotes recruitment of scleractinian corals. Ecol Lett 9:271–280

    PubMed  Google Scholar 

  • Chenelot H, Konar B (2007) Lacuna vincta (Mollusca, Neotaenioglossa) herbivory on juvenile and adult Nereocystis luetkeana (Heterokontophyta, Laminariales). Hydrobiology 583:107–118

    Google Scholar 

  • Clavel J, Julliard R, Devictor V (2011) Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ 9:222–228

    Google Scholar 

  • Clements KD, Raubenheimer D, Choat JH (2009) Nutritional ecology of marine herbivorous fishes: ten years on. Funct Ecol 23:79–92

    Google Scholar 

  • Coleman RA, Underwood AJ, Benedetti-Cecchi L, Åberg P, Arenas F, Arrontes J, Castro J, Hartnoll RG, Jenkins SR, Paula J, Della Santina P, Hawkins SJ (2006) A continental scale evaluation of the role of limpet grazing on rocky shores. Oecologia 147:556–564

    PubMed  Google Scholar 

  • Coleman RA, Ramchunder SJ, Davies KM, Moody AJ, Foggo A (2007) Herbivore-induced infochemicals influence foraging behavior in two intertidal predators. Oecologia 151:454–463

    PubMed  Google Scholar 

  • Cornwall CE, Phillips NE, McNaught DC (2009) Feeding preference of the abalone Haliotis iris in relation to macroalgal species, attachment, accessibility and water movement. J Shellfish Res 28:589–597

    Google Scholar 

  • Cronin G (2001) Resource allocation in seaweeds and marine invertebrates: chemical defense patterns in relation to defense theory. In: McClintock JB, Baker BJ (eds) Marine Chemical Ecology. CRC, Boca Raton, FL, pp 325–354

    Google Scholar 

  • Cruz-Rivera E, Hay ME (2003) Prey nutritional quality interacts with chemical defenses to affect consumer feeding and fitness. Ecol Monogr 73:483–506

    Google Scholar 

  • Davenport AC, Anderson TW (2007) Positive indirect effects of reef fishes on kelp performance: the importance of mesograzers. Ecology 88:1548–1561

    PubMed  Google Scholar 

  • Deal MS, Hay ME, Wilson D, Fenical W (2003) Galactolipids rather than phlorotannins as herbivore deterrents in the brown seaweed Fucus vesiculosus. Oecologia 136:107–114

    PubMed  Google Scholar 

  • Dicke M (2009) Behavioural and community ecology of plants that cry for help. Plant Cell Environ 32:654–665

    PubMed  CAS  Google Scholar 

  • Duffy JE (1990) Amphipods on seaweeds: partners or pests? Oecologia 83:267–276

    PubMed  CAS  Google Scholar 

  • Duffy JE, Hay ME (1990) Seaweed adaptations to herbivory. BioScience 40:368–375

    Google Scholar 

  • Duffy JE, Hay ME (1991) Food and shelter as determinants of food choice by an herbivorous marine amphipod. Ecology 72:1286–1298

    Google Scholar 

  • Duffy JE, Hay ME (2000) Strong impacts of grazing amphipods on the organization of a benthic community. Ecol Monogr 70:237–263

    Google Scholar 

  • Duffy JE, Richardson JP, Canuel EA (2003) Grazer diversity effects on ecosystem functioning in seagrass beds. Ecol Lett 6:637–645

    Google Scholar 

  • Duggins D, Eckman JE, Siddon CE, Klinger T (2001) Interactive roles of mesograzers and current flow in survival of kelps. Mar Ecol Prog Ser 223:143–155

    Google Scholar 

  • Engkvist R, Malm T, Tobiasson S (2000) Density-dependent grazing effects of the isopod Idotea baltica Pallas on Fucus vesiculosus L in the Baltic Sea. Aquat Ecol 34:253–260

    Google Scholar 

  • Estes JA, Duggins DO (1995) Sea otters and kelp forests in Alaska: generality and variation in a community ecological paradigm. Ecol Monogr 65:75–100

    Google Scholar 

  • Fong P, Smith TB, Wartian MJ (2006) Epiphytic cyanobacteria maintain shifts to macroalgal dominance on coral reefs following ENSO disturbance. Ecology 87:1162–1168

    PubMed  Google Scholar 

  • Ginsburg DW, Paul VJ (2001) Chemical defenses in the sea hare Aplysia parvula: importance of diet and sequestration of algal metabolites. Mar Ecol Prog Ser 215:261–274

    CAS  Google Scholar 

  • Gollan JR, Wright JT (2006) Limited grazing pressure by native herbivores on the invasive seaweed Caulerpa taxifolia in a temperate Australian estuary. Mar Freshwater Res 57:685–694

    Google Scholar 

  • Hawkins SJ, Hartnoll RG (1983) Grazing of intertidal algae by marine invertebrates. Oceanogr Mar Biol Annu Rev 21:195–282

    Google Scholar 

  • Hay ME (2009) Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Annu Rev Mar Sci 1:193–212

    Google Scholar 

  • Hay ME, Duffy JE, Pfister CA, Fenical W (1987) Chemical defense against different marine herbivores: are amphipods insect equivalents? Ecology 68:1567–1580

    CAS  Google Scholar 

  • Hay ME, Renaud PE, Fenical W (1988) Large mobile versus small sedentary herbivores and their resistance to seaweed chemical defenses. Oecologia 75:246–252

    Google Scholar 

  • Hay ME, Paul VJ, Lewis SM, Gustafson K, Tucker J, Trindell RN (1989a) Can tropical seaweeds reduce herbivory by growing at night? Diel patterns of growth, nitrogen content, herbivory, and chemical versus morphological defenses. Oecologia 75:233–245

    Google Scholar 

  • Hay ME, Pawlik JR, Duffy JE, Fenical W (1989b) Seaweed-herbivore-predator interactions: host-plant specialization reduces predation on small herbivores. Oecologia 81:418–427

    Google Scholar 

  • Hay ME, Duffy JE, Fenical W (1990a) Host-plant specialization decreases predation on a marine amphipod: an herbivore in plant’s clothing. Ecology 71:733–743

    Google Scholar 

  • Hay ME, Duffy JE, Paul VJ, Renaud PE, Fenical W (1990b) Specialist herbivores reduce their susceptibility to predation by feeding on the chemically defended seaweed Avrainvillea longicaulis. Limnol Oceanogr 35:1734–1743

    Google Scholar 

  • Hay ME, Kappel QE, Fenical W (1994) Synergisms in plant defenses against herbivores: interactions of chemistry, calcification, and plant quality. Ecology 75:1714–1726

    Google Scholar 

  • Hay ME, Parker JD, Burkepile DE, Caudill CC, Wilson AE, Hallinan ZP, Chequer AD (2004) Mutualism and aquatic community structure: the enemy of my enemy is my friend. Annu Rev Ecol Evol Syst 35:175–197

    Google Scholar 

  • Hemmi A, Jormalainen V (2002) Nutrient enhancement increases performance of a marine herbivore via quality of its food alga. Ecology 83:1052–1064

    Google Scholar 

  • Hillebrand H, Cardinale J (2004) Consumer effects decline with prey diversity. Ecol Lett 7:192–201

    Google Scholar 

  • Horn MH (1989) Biology of marine herbivorous fishes. Oceanogr Mar Biol Annu Rev 27:167–272

    Google Scholar 

  • Horn MH, Gawlicka AK, German DP, Logothetis EA, Cavanagh JW, Boyle KS (2006) Structure and function of the stomachless digestive system in three related species of New World silverside fishes (Atherinopsidae) representing herbivory, omnivory, and carnivory. Mar Biol 149:1237–1245

    Google Scholar 

  • Huang YM, Amsler MO, McClintock JB, Amsler CD, Baker BJ (2007) Patterns of gammaridean amphipod abundance and species composition associated with dominant subtidal macroalgae from the western Antarctic Peninsula. Polar Biol 30:1417–1430

    Google Scholar 

  • Iken K (1999) Feeding ecology of the Antarctic herbivorous gastropod Laevilacunaria antarctica Martens. J Exp Mar Biol Ecol 236:133–148

    Google Scholar 

  • Iken K, Barrera-Oro ER, Quartino ML, Casaux RJ, Brey T (1997) Grazing in the Antarctic fish Notothenia coriiceps: evidence for selective feeding on macroalgae. Antarct Sci 9:386–391

    Google Scholar 

  • Iken K, Amsler CD, Hubbard JM, McClintock JB, Baker BJ (2007) Allocation patterns of phlorotannins in Antarctic brown algae. Phycologia 46:386–395

    Google Scholar 

  • Iken K, Amsler CD, Amsler MO, McClintock JB, Baker BJ (2011) Field studies on deterrent roles of phlorotannins in Antarctic brown algae. In: Wiencke C (ed) Biology of polar benthic algae. Walter de Gruyter GmbH & Co. KH, Göttingen, pp 121–138

    Google Scholar 

  • Jenkins SR, Moore P, Burrows MT, Garbary DJ, Hawkins SJ, Ingólfsson A, Sebens KP, Snelgrove PVR, Wethey DS, Woodin SA (2008) Comparative ecology of North Atlantic shores: do differences in players matter for process? Ecology 89:S3–S23

    PubMed  Google Scholar 

  • Jones GP, Santana L, McCook LJ, McCormick MI (2006) Resource use and impact of three herbivorous damselfishes on coral reef communities. Mar Ecol Prog Ser 328:215–224

    Google Scholar 

  • Jormalainen V, Honkanen T (2008) Macroalgal chemical defenses and their roles in structuring temperate marine communities. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 57–89

    Google Scholar 

  • Jormalainen V, Honkanen T, Heikkilä N (2001a) Feeding preferences and performance of a marine isopod on seaweed hosts: cost of habitat specialization. Mar Ecol Prog Ser 220:219–230

    Google Scholar 

  • Jormalainen V, Honkanen T, Mäkinen A, Vesakoski O (2001b) Why does herbivore sex matter? Sexual differences in utilization of Fucus vesiculosus by the isopod Idotea baltica. Oikos 93:77–86

    Google Scholar 

  • Kennish R (1996) Diet composition influences the fitness of the herbivorous crab Crapsus albolineatus. Oecologia 105:22–29

    Google Scholar 

  • Konar B (2000) Seasonal inhibitory effects of marine plants on sea urchins: structuring communities the algal way. Oecologia 125:208–217

    PubMed  CAS  Google Scholar 

  • Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, MacKenzie FT (2008) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117

    CAS  Google Scholar 

  • Lewis SM, Norris JN, Searles RB (1987) The regulation of morphological plasticity in tropical reef algae by herbivory. Ecology 68:636–641

    Google Scholar 

  • Lindegarth M, Åberg PA, Cervin G, Nilsson PG (2001) Effects of grazing on the structure of mid-shore, intertidal assemblages on moderately exposed rocky shores on the Swedish west coast. Mar Ecol Prog Ser 212:29–38

    Google Scholar 

  • Littler MM, Littler DS (1980) The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Am Nat 116:25–44

    Google Scholar 

  • Littler MM, Littler DS, Taylor PR (1995) Selective herbivore increases biomass of its prey: a chiton-corraline reef-building association. Ecology 76:1666–1681

    Google Scholar 

  • Lotze HK, Worm B (2000) Variable and complementary effects of herbivores on different life stages of bloom-forming macroalgae. Mar Ecol Prog Ser 200:167–175

    Google Scholar 

  • Lotze HK, Worm B, Sommer U (2000) Propagule banks, herbivory and nutrient supply control population development and dominance patterns in macroalgal blooms. Oikos 89:46–58

    Google Scholar 

  • Lubchenco J, Gaines SD (1981) A unified approach to marine plant-herbivore interactions. 1. Populations and communities. Annu Rev Ecol Syst 12:405–437

    Google Scholar 

  • Lubchenco J (1978) Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities. Am Nat 112:23–39

    Google Scholar 

  • Mantyka CS, Bellwood DR (2007) Macroalgal grazing selectivity among herbivorous coral reef fishes. Mar Ecol Prog Ser 352:177–185

    Google Scholar 

  • Markel RW, DeWreede RE (1998) Mechanisms underlying the effect of the chiton Katharina tunicata on the kelp Hedophyllum sessile: size escapes and indirect effects. Mar Ecol Prog Ser 166:151–161

    Google Scholar 

  • Marques LV, Villaça R, Pereira RC (2006) Susceptibility of macroalgae to herbivorous fishes at Rocas Atoll, Brazil. Bot Mar 49:379–385

    Google Scholar 

  • Maschek JA, Baker BJ (2008) The chemistry of algal secondary metabolites. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 1–24

    Google Scholar 

  • Montgomery WL, Gerking SD (1980) Marine macroalgae as foods for fishes: an evaluation of potential food quality. Environ Biol Fish 5:143–153

    Google Scholar 

  • Morelissen B, Harley CDG (2007) The effects of temperature on producers, consumers, and plant-herbivore interactions in an intertidal community. J Exp Mar Biol Ecol 348:162–173

    Google Scholar 

  • Mumby PJ, Dahlgren CP, Harborne AR, Kappel CV, Micheli F, Brumbaugh DR, Holmes KE, Mendes JM, Broad K, Sanchirico JN, Buch K, Box S, Stoffle RW, Gill AB (2006) Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311:98–101

    PubMed  CAS  Google Scholar 

  • O’Connor NE, Crowe TP (2005) Biodiversity loss and ecosystem functioning: distinguishing between number and identity of species. Ecology 86:1783–1796

    Google Scholar 

  • O'Connor MI (2009) Warming strengthens an herbivore-plant interaction. Ecology 90:388–398

    PubMed  Google Scholar 

  • Ojeda FP, Muñoz AA (1999) Feeding selectivity of the herbivorous fish Scartichthys viridis: effects on macroalgal community structure in a temperate rocky intertidal coastal zone. Mar Ecol Prog Ser 184:219–229

    Google Scholar 

  • Orav-Kotta H, Kotta J (2004) Food and habitat choice of the isopod Idotea baltica in the northeastern Baltic Sea. Hydrobiology 514:79–85

    Google Scholar 

  • Paul VJ, Hay ME (1986) Seaweed susceptibility to herbivory: chemical and morphological correlates. Mar Ecol Prog Ser 33:255–264

    CAS  Google Scholar 

  • Pavia H, Toth GB (2008) Macroalgal models in testing and extending defense theories. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 147–172

    Google Scholar 

  • Pavia H, Toth GB, Åberg P (2002) Optimal defense theory: elasticity analysis as a tool to predict intra-plant variation in defenses. Ecology 83:891–897

    Google Scholar 

  • Pereira RC, da Gama BAP (2008) Macroalgal chemical defenses and their roles in structuring tropical marine communities. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 25–55

    Google Scholar 

  • Petchey OL, Brose U, Rall BC (2010) Predicting the effects of temperature on food web connectance. Philos Trans R Soc B 365:2081–2091

    Google Scholar 

  • Pfister CA, Hay ME (1988) Associational plant refuges: convergent patterns in marine and terrestrial communities result from differing mechanisms. Oecologia 77:118–129

    Google Scholar 

  • Pinnegar JK, Polunin NVC, Francour P, Badalamenti F, Chemello R, Harmelin-Vivien ML, Hereu B, Milazzo M, Zabala M, D’Anna G, Pipitone C (2000) Trophic cascades in benthic marine ecosystems: lessons for fisheries and protected-area management. Environ Conserv 27:179–200

    Google Scholar 

  • Poore AGB, Campbell AH, Steinberg PD (2009) Natural densities of mesograzers fail to limit growth of macroalgae or their epiphytes in a temperate algal bed. J Ecol 97:164–175

    Google Scholar 

  • Rhoades DF (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interaction with secondary plant metabolites. Academic, New York, pp 1–55

    Google Scholar 

  • Rowcliffe JM, Watkinson AR, Sutherland WJ, Vickery JA (2001) The depletion of algal beds by geese: a predictive model and test. Oecologia 127:361–371

    Google Scholar 

  • Santelices B, Bobadilla M (1996) Gastropod pedal mucus retains seaweed propagules. J Exp Mar Biol Ecol 197:251–261

    Google Scholar 

  • Shepherd SA, Hawkes MW (2005) Algal food preferences and seasonal foraging strategies of the marine iguana, Amblyrhynchus cristatus, on Santa Cruz, Galapagos. Bull Mar Sci 77:51–77

    Google Scholar 

  • Slocum CJ (1980) Differential susceptibility to grazers in two phases of an intertidal alga: Advantages of heteromorphic generations. J Exp Mar Biol Ecol 46:99–110

    Google Scholar 

  • Soares AR, Teixeira VL, Pereira RC, Villaça R (2003) Variation on diterpene production by the Brazilian alga Stypopodium zonale (Dictyotales, Phaeophyta). Biochem Syst Ecol 31:1347–1350

    CAS  Google Scholar 

  • Spurkland T, Iken K (2011) Kelp bed dynamics in estuarine environments in sub-Arctic Alaska. J Coast Res 27:133–143. doi 10.2112/JCOASTRES-D-10-00194

    Google Scholar 

  • Steneck RS, Watling L (1982) Feeding capabilities and limitation of herbivore molluscs: a functional group approach. Mar Biol 68:299–319

    Google Scholar 

  • Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459

    Google Scholar 

  • Targett NM, Arnold TM (2001) Effects of secondary metabolites on digestion in marine herbivores. In: McClintock JB, Baker BB (eds) Marine chemical ecology. CRC, Boca Raton, pp 391–411

    Google Scholar 

  • Taylor RB, Brown PJ (2006) Herbivory in the gammarid amphipod Aora typica: relationships between consumption rates, performance and abundance across ten seaweed species. Mar Biol 149:455–463

    Google Scholar 

  • Toth GB, Pavia H (2007) Induced herbivore resistance in seaweeds: a meta-analysis. J Ecol 95:425–434

    Google Scholar 

  • Toth GB, Langhamer O, Pavia H (2005) Inducible and constitutive defenses of valuable seaweed tissues: consequences for herbivore fitness. Ecology 86:612–618

    Google Scholar 

  • Van Alstyne KL (1989) Adventitious branching as a herbivore-induced defense in the intertidal brown alga Fucus distichus. Mar Ecol Prog Ser 56:169–176

    Google Scholar 

  • Van Alstyne KL (1990) Effects of wounding by the herbivorous snails Littorina sitkana and L. scutulata (Mollusca) on growth and reproduction of the intertidal alga Fucus distichus (Phaeophyta). J Phycol 26:412–416

    Google Scholar 

  • Viejo RM, Åberg P (2003) Temporal and spatial variation in the density of mobile epifauna and grazing damage on the seaweed Ascophyllum nodosum. Mar Biol 142:1229–1241

    Google Scholar 

  • Villaça R, Fonseca AC, Köppe Jansen V, Knoppers B (2010) Species composition and distribution of macroalgae on Atol das Rocas, Brazil, SW Atlantic. Bot Mar 53:113–122

    Google Scholar 

  • Whiting SD (2002) Rocky reefs provide foraging habitat for dugongs in the Darwin region of northern Australia. Aust Mammal 24:147–150

    Google Scholar 

  • Williamson JE, Carson DG, de Nys R, Steinberg PD (2004) Demographic consequences of an ontogenetic shift by a sea urchin in response to host plant chemistry. Ecology 85:1355–1371

    Google Scholar 

  • Worm B, Lotze HK, Boström C, Engkvist R, Labanauskas V, Sommer U (1999) Marine diversity shift linked to interactions among grazers, nutrients and propagule banks. Mar Ecol Prog Ser 185:309–314

    Google Scholar 

  • Worm B, Lotze HK, Sommer U (2000) Coastal food web structure, carbon storage, and nitrogen retention regulated by consumer pressure and nutrient loading. Limnol Oceanogr 45:339–349

    CAS  Google Scholar 

  • Wright JT, Dworjanyn SA, Rogers CN, Steinberg PD, Williamson JE, Poore AGB (2005) Density-dependent sea urchin grazing: differential removal of species, changes in community composition and alternative community states. Mar Ecol Prog Ser 298:143–156

    Google Scholar 

Download references

Acknowledgements

I am grateful to Brenda Konar for productive discussions and thoughtful comments on the manuscript. I also thank Charles Amsler, Gunilla Toth, and Tania Spurkland for helpful comments that greatly improved the manuscript. Preparation of the manuscript was supported by NaGISA, the nearshore field project of the Census of Marine Life program, award #2008-12-1 by the Alfred P. Sloan Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Iken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iken, K. (2012). Grazers on Benthic Seaweeds. In: Wiencke, C., Bischof, K. (eds) Seaweed Biology. Ecological Studies, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28451-9_8

Download citation

Publish with us

Policies and ethics