Skip to main content

Seaweed Responses to Temperature

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 219))

Abstract

This chapter reviews three types of temperature responses of seaweeds that take place over different timescales: short-term physiological regulation (seconds to minutes), phenotypic acclimation in response to variation of environmental conditions (hours to days), and genetic adaptation to local conditions (up to thousands to millions of years). The effects of temperature on performance traits (i.e., growth and photosynthesis) and temperature tolerance ranges (i.e., survival) have been experimentally determined for a wide variety of seaweed species and explain large-scale biogeographic distribution patterns. In contrast, studies on temperature effects on cellular components (i.e., proteins and membranes) and environmentally induced changes in transcriptional processes still remain scarce. One major obstacle has been the lack of genomic information of seaweed species, which is now increasing. Furthermore, sophisticated ecological niche models have been applied in the recent years to predict geographical areas with suitable environmental conditions for marine seaweed species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress. An overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    CAS  PubMed  Google Scholar 

  • Andreakis N, Procaccini G, Maggs C, Kooistra WHCF (2007) Phylogeography of the invasive seaweed Asparagopsis (Bonnemaisoniales, Rhodophyta) reveals cryptic diversity. Mol Ecol 16:2285–2299

    CAS  PubMed  Google Scholar 

  • Asamizu E, Nakajima M, Kitade Y, Saga N, Nakamura Y, Tabata S (2003) Comparison of RNA expression profiles between the two generations of Porphyra yezoensis (Rhodophyta), based on expressed sequence tag frequency analysis. J Phycol 39:923–930

    Google Scholar 

  • Ateweberhan M, Bruggemann JH, Breeman AM (2005) Seasonal patterns of biomass, growth and reproduction in Dictyota cervicornis and Stoechospermum polyplioides (Dictyotales, Phaeophyta) on a shallow reef flat in the southern Red Sea (Eritrea). Bot Mar 48:8–17

    Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Becker S, Walter B, Bischof K (2009) Freezing tolerance and photosynthetic performance of polar seaweeds at low temperatures. Bot Mar 52:609–616

    CAS  Google Scholar 

  • Bergström L, Tatarenkov A, Johannesson K, Jonsson RB, Kautsky L (2005) Genetic and morphological identification of Fucus radicans sp. nov. (Fucales, Phaeophyceae) in the brackish Baltic Sea. J Phycol 41:1025–1038

    Google Scholar 

  • Bischoff B, Wiencke C (1995) Temperature adaptation in strains of the amphi-equatorial green alga Urospora penicilliformis (Acrosiphoniales): biogeographical implications. Mar Biol 122:681–688

    Google Scholar 

  • Bischoff-Bäsmann B, Wiencke C (1996) Temperature requirements for growth and survival of Antarctic Rhodophyta. J Phycol 32:525–535

    Google Scholar 

  • Bischoff-Bäsmann B, Bartsch I, Xia B, Wiencke C (1997) Temperature responses of macroalgae from the tropical island Hainan (P.R. China). Phycol Res 45:91–104

    Google Scholar 

  • Blanchard G, Guarini J-M, Richard P, Gros P, Mornet F (1996) Quantifying the short-term temperature effect on light-saturated photosynthesis of intertidal microphytobenthos. Mar Ecol Prog Ser 134:309–313

    Google Scholar 

  • Blažina M, Ivesa L, Najdek M (2009) Caulerpa racemosa: adaptive varieties studied by fatty acid composition (Northern Adriatic Sea, Vrsar, Croatia). Eur J Phycol 44:183–189

    Google Scholar 

  • Boedeker C, Farr TJ, Nelson WA (2008) Comparative culture experiments with filamentous members of the Bangiales (Rhodophyta) from New Zealand: insight into ecological adaptation and biogeography. Phycol Res 56:183–192

    Google Scholar 

  • Bolton JJ (1983) Ecoclinal variation in Ectocarpus siliculosus (Phaeophyceae) with respect to temperature growth optima and survival limits. Mar Biol 73:131–138

    Google Scholar 

  • Bolton JJ, Lüning K (1982) Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture. Mar Biol 66:89–94

    Google Scholar 

  • Breeman AM (1988) Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: experimental and phonological evidence. Helgol Meeresunters 42:199–241

    Google Scholar 

  • Breeman AM, Pakker H (1994) Temperature ecotypes in seaweeds: adaptive significance and biogeographic implications. Bot Mar 37:171–180

    Google Scholar 

  • Breeman AM, Oh Y, Hwang M, van den Hoek C (2002) Evolution of temperature responses in the Cladophora vagabunda complex and the C. albida/sericea complex (Chlorophyta). Eur J Phycol 37:45–58

    Google Scholar 

  • Briggs JC (1995) Global biogeography. Elsevier, Amsterdam

    Google Scholar 

  • Cambridge ML, Breeman AM, van Oosterwijk R, van den Hoek C (1984) Temperature responses of some North Atlantic Cladophora species (Chlorophyceae) in relation to their geographic distribution. Helgol Meeresunters 38:349–363

    Google Scholar 

  • Cambridge ML, Breeman AM, Kraak S, van den Hoek C (1987) Temperature responses of tropical to warm-temperate Cladophora species in relation to their distribution in the North Atlantic Ocean. Helgol Meeresunters 41:329–354

    Google Scholar 

  • Carratù L, Franceschelli S, Pardini CL, Kobayashi GS, Horvath I, Vigh L, Maresca B (1996) Membrane lipid perturbation modifies the set point of the temperature of heat shock response in yeast. Proc Natl Acad Sci USA 93:3870–3875

    PubMed Central  PubMed  Google Scholar 

  • Ciamporova M, Trginova I (1996) Ultrastrucutre of chloroplasts in leaves and of plastids in root tips of two maize lines differing in chilling tolerance. Biologia Bratislava 51:441–447

    Google Scholar 

  • Clark MS, Peck LS (2009) HSP70 heat shock proteins and environmental stress in Antarctic marine organisms: a mini-review. Mar Genom 2:11–18

    Google Scholar 

  • Clarke A (2003) Costs and consequences of evolutionary temperature adaptation. Trends Ecol Evol 18:573–581

    Google Scholar 

  • Collén J, Roeder V, Rousvoal S, Collin O, Kloareg B, Boyen C (2006) An expressed sequence tag analysis of thallus and regeneration protoplasts of Chondrus crispus (Gigartinales, Rhodophyceae). J Phycol 42:104–112

    Google Scholar 

  • Collén J, Guisle-Marsollier I, Léger JJ, Boyen C (2007) Response of the transcirptome of the intertidal red seaweed Chondrus crispus to controller and natural stresses. New Phytol 176:45–55

    PubMed  Google Scholar 

  • Coyer JA, Hoarau G, Costa JF, Hogerdijk B, Serrão EA, Billard E, Valero M, Pearson A, Olsen JL (2011) Evolution and diversification within the intertidal brown macroalgae Fucus spiralis/F. vesiculosus species complex in the North Atlantic. Mol Phylogenet Evol 58:283–296

    CAS  PubMed  Google Scholar 

  • Crame JA (1993) Latitudinal range fluctuations in the marine realm through geological time. Trends Ecol Evol 10:1096–1111

    Google Scholar 

  • Davison IR (1987) Adaptation of photosynthesis in Laminaria saccharina (Phaeophyta) to changes in growth temperature. J Phycol 23:273–283

    Google Scholar 

  • Davison IR, Pearson GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32:197–211

    Google Scholar 

  • Davison IR, Greene RM, Podolak EJ (1991) Temperature acclimation of respiration and photosynthesis in the brown alga Laminaria saccharina. Mar Biol 110:449–454

    Google Scholar 

  • Deere JA, Chown SL (2006) Testing the beneficial acclimation hypothesis and its alternatives for locomotor performance. Am Nat 168:630–644

    PubMed  Google Scholar 

  • Descolas-Gros C, De Billy G (1987) Temperature adaptation of RuBP carboxylase: kinetic properties in marine Antarctic diatoms. J Exp Mar Biol Ecol 108:147–158

    CAS  Google Scholar 

  • Devos N, Ingouff M, Loppes R, Matagne R (1998) Rubisco adaptation to low temperatures: a comparative study in psychrophilic and mesophilic unicellular algae. J Phycol 34:655–660

    CAS  Google Scholar 

  • Dong Y, Somero GN (2009) Temperature adaptation of cytosolic malate dehydrogenases of limpets (genus Lottia): differences in stability and function due to minor changes in sequence correlate with biogeographic and vertical distributions. J Exp Biol 212:169–177

    CAS  PubMed  Google Scholar 

  • Dring MJ (1984) Photoperiodism and phycology. In: Round F, Chapman DJ (eds) Progress in phycological research, vol 3. Biopress, Bristol, pp 159–192

    Google Scholar 

  • Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic, San Diego

    Google Scholar 

  • Eggert A (2002) Thermal ecotypes in the green macrophyte Valonia utricularis. PhD thesis, University of Groningen, The Netherlands, pp 213

    Google Scholar 

  • Eggert A, Karsten U (2010) Low molecular weight carbohydrates in red algae—an ecophysiological and biochemical perspective. Red algae in the genomic age, cellular origin, life in extreme habitats and astrobiology, 13(5):443–456

    Google Scholar 

  • Eggert A, Wiencke C (2000) Adaptation and acclimation of growth and photosynthesis of five Antarctic red algae to low temperatures. Polar Biol 23:609–618

    Google Scholar 

  • Eggert A, Burger EM, Breeman AM (2003a) Ecotypic differentiation in thermal traits in the tropical to warm-temperate green macrophyte Valonia utricularis. Bot Mar 46:69–81

    Google Scholar 

  • Eggert A, van Hasselt PR, Breeman AM (2003b) Chilling-induced photoinhibition in nine isolates of Valonia utricularis (Chlorophyta) from different climate regions. J Plant Physiol 160:881–891

    CAS  PubMed  Google Scholar 

  • Eggert A, Visser RJW, van Hasselt PR, Breeman AM (2006) Differences in acclimation potential of photosynthesis in seven isolates of the tropical to warm temperate macrophyte Valonia utricularis (Chlorophyta). Phycologia 45:546–556

    Google Scholar 

  • Einav R, Breckle S, Beer S (1995) Ecophysiological adaptation strategies of some intertidal marine macroalgae of the Israeli Mediterranean coast. Mar Ecol Prog Ser 125:219–228

    Google Scholar 

  • Fields PA, Houseman DE (2004) Decreases in activation energy and substrate affinity in cold-adapted A4-lactate dehydrogenases: evidence from the Antarctic notothenioid fish Chaenocephalus aceratus. Mol Biol Evol 21:2246–2255

    CAS  PubMed  Google Scholar 

  • Gantt E, Berg M, Bhattacharya D, Blouin NA, Brodie JA, Chan CX, Collén J, Cunningham FX, Gross J, Grossman AR, Karpowicz S, Kitade Y, Klein A, Levine IA, Lin S, Lu S, Lynch M, Minocha SC, Müller K, Neefus CD, De Oliveira MC, Rymarquis L, Smith A, Stiller JW, Wu W-K, Yarish C, Zhuang YY, Brawley SH (2010) Porphyra: complex life histories in a harsh environment. P. umbilicalis, an intertidal red alga for genomic analysis. In: Seckbach J, Chapman D (eds) Red algae in genomic age. (volume 13 of cellular origins, life in extreme habitats and astrobiology). Springer, Berlin

    Google Scholar 

  • Gerard V, Du Bois K (1988) Temperature ecotypes near the southern boundary of the kelp Laminaria saccharina. Mar Biol 97:575–580

    Google Scholar 

  • Gómez I, Wulff A, Roleda MY, Huovinen P, Karsten U, Quartino ML, Dunton K, Wiencke C (2009) Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. Bot Mar 52:593–608

    Google Scholar 

  • Graham MH, Kinlan BP, Druehl LD, Garske LE, Banks S (2007) Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity. Proc Nat Acad Sci USA 104:16576–16580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gray GR, Chauvin LP, Sarhan F, Huner NPA (1997) Cold acclimation and freezing tolerance: A complex interaction of light and temperature. Plant Physiol 114:467–474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Google Scholar 

  • Havaux M, Tardy F (1996) Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: possible involvement of xanthophylls cycle pigments. Planta 198:324–333

    CAS  Google Scholar 

  • Helmuth BST, Hofmann GE (2001) Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone. Biol Bull 201:374–384

    CAS  PubMed  Google Scholar 

  • Henkel SK, Kawai H, Hofmann GE (2009) Interspecific and interhabitat variation in hsp70 gene expression in native and invasive kelp populations. Mar Ecol Prog Ser 386:1–13

    CAS  Google Scholar 

  • Hey J (2006) On the failure of modern species concepts. Trends Ecol Evol 21:447–450

    PubMed  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New York

    Google Scholar 

  • Hoek C van den, Chihara M (2000) Delimitation of the genus Cladophora, reflexions on phylogeny of Cladophora, geographic distribution. Koyama H, Kitayama T (ed.) National Science Museum Monographs No. 19, National Science Museum, 14–36

    Google Scholar 

  • Hoffmann AA, Willi Y (2008) Detecting genetic responses to environmental change. Nat Rev Genet 9:421–432

    CAS  PubMed  Google Scholar 

  • Hofmann GE, Buckley BA, Airaksinen S, Keen JE, Somero GN (2000) Heat-shock protein expression is absent in the Antarctic fish Trematomus bernacchii (Family Nototheniidae). J Exp Biol 203:2331–2339

    CAS  PubMed  Google Scholar 

  • Holaday A, Martindale W, Alred R, Brooks A, Leegood R (1992) Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature. Plant Physiol 98:1105–1114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horvath I, Glatz A, Varvasovszki V, Torok Z, Pali T, Balogh G, Kovacs E, Nadasdi L, Benko S, Joo F, Vigh L (1998) Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a ‘fluidity gene. Proc Natl Acad Sci USA 95:3513–3518

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huner N, Öquist G, Hurry V, Krol M, Falk S, Griffith M (1993) Photosynthesis, photoinhibition and low temperature in cold tolerant plants. Photosynth Res 37:19–39

    CAS  PubMed  Google Scholar 

  • Huner N, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Google Scholar 

  • Inaba M, Suzuki I, Szalontai B, Kanesaki Y, Los DA, Hayashi H, Murata N (2003) Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in Synechocystis. J Biol Chem 278:12191–12198

    CAS  PubMed  Google Scholar 

  • Janech MG, Krell A, Mock T, Kang J-S, Raymond JA (2006) Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol 42:410–416

    CAS  Google Scholar 

  • Johansson G, Sosa PA, Snoeijs P (2003) Genetic variability and level of differentiation in North Sea and Baltic Sea populations of the green alga Cladophora rupestris. Mar Biol 142:1019–1027

    Google Scholar 

  • Kain JM (1989) The seasons in the subtidal. Br Phycol J 24:203–215

    Google Scholar 

  • Kim JK, Kraemer GP, Yarish C (2009) Comparison of growth and nitrate uptake by New England Porphyra species from different tidal elevations in relation to desiccation. Phycol Res 57:152–157

    CAS  Google Scholar 

  • Kingston-Smith A, Harbinson J, Williams J, Foyer C (1997) Effect of chilling on carbon assimilation, enzyme activation, and photosynthetic electron transport in the absence of photoinhibition in maize leaves. Plant Physiol 114:1039–1046

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirst GO (1990) Salinity tolerance of eukaryotic algae. Annu Rev Plant Physiol Plant Mol Biol 41:21–53

    CAS  Google Scholar 

  • Kooistra WHCF, Stam WT, Olsen JL, van den Hoek C (1992) Biogeography of Cladophoropsis membranacea based on comparisons of nuclear rDNA ITS sequences. J Phycol 28:660–668

    CAS  Google Scholar 

  • Kooistra WHCF, Coppejans EGG, Payri C (2002) Molecular systematics, historical ecology, and phylogeography of Halimeda (Bryopsidales). Mol Phylogenet Evol 24:121–138

    CAS  PubMed  Google Scholar 

  • Kübler JE, Davison IR (1993) High-temperature tolerance of photosynthesis in the red alga Chondrus crispus. Mar Biol 117:327–335

    Google Scholar 

  • Kübler JE, Davison IR (1995) Thermal acclimation of light-use characteristics of Chrondrus crispus (Rhodophyta). Eur J Phycol 30:189–195

    Google Scholar 

  • Kübler J, Davison IR, Yarish C (1991) Photosynthetic adaptation to temperature in the red algae Lomentaria baileyana and Lomentaria orcadensis. Br Phycol J 26:9–19

    Google Scholar 

  • Larkindale J, Mishkind M, Vierling E (2005) Plant responses to high temperature. In: Jenks MA, Hasegawa PM (eds) Plant abiotic stress. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Leroi AM, Bennett AF, Lenski RE (1994) Temperature acclimation and competitive fitness: an experimental test of the beneficial acclimation assumption. Proc Nat Acad Sci USA 91:1917–1921

    CAS  PubMed Central  PubMed  Google Scholar 

  • Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta Biomembr 1666:142–157

    CAS  Google Scholar 

  • Lüning K (1990) Seaweeds: their environment, biogeography, and ecophysiology. Wiley, New York

    Google Scholar 

  • Lüning K, Freshwater W (1988) Temperature tolerance of northeast Pacific marine algae. J Phycol 24:310–315

    Google Scholar 

  • Machalek KM, Davison IR, Falkowski PG (1996) Thermal acclimation and photoacclimation of photosynthesis in the brown alga Laminaria saccarina. Plant Cell Environ 19:1005–1016

    CAS  Google Scholar 

  • Martone PT, Alyono M, Stites S (2010) Bleaching of an intertidal coralline alga: untangling the effects of light, temperature, and desiccation. Mar Ecol Prog Ser 416:57–67

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Google Scholar 

  • Molenaar F (1996) Seasonal growth and reproduction of North Atlantic red seaweeds. PhD dissertation, Groningen, The Netherlands, p 111

    Google Scholar 

  • Murata N, Los D (1997) Membrane fluidity and temperature perception. Plant Physiol 115:875–879

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nie G, Robertson E, Fryer M, Leech R, Baker N (1995) Response of the photosynthetic apparatus in maize leaves grown at low temperature on transfer to normal growth temperature. Plant Cell Environ 18:1–12

    CAS  Google Scholar 

  • Nikaido I, Asamizu E, Nakajima M, Nakamura Y, Saga N, Tabata S (2000) Generation of 10,154 expressed sequence tags from a leafy gametophyte of a marine red alga, Porphyra yezoensis. DNA Res 7:223–227

    PubMed  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568

    CAS  PubMed  Google Scholar 

  • Padilla-Gamiňo JL, Carpenter RC (2007) Seasonal acclimatization of Asparagopsis taxiformis (Rhodophyta) from different biogeographic regions. Limnol Oceanogr 52:833–842

    Google Scholar 

  • Pakker H, Breeman AM (1996) Temperature responses of tropical to warm-temperate Atlantic seaweeds. II. Evidence for ecotypic differentiation in amphi-Atlantic-Tropical-Mediterranean species. Eur J Phycol 31:133–141

    Google Scholar 

  • Pakker H, Breeman AM, Prud'homme van Reine WF, van den Hoek C (1995) A comparative study of temperature responses of Caribbean seaweeds from different biogeographic groups. J Phycol 31:499–507

    Google Scholar 

  • Pakker H, Breeman AM, Prud’homme van Reine WF, van Oppen MJH, van den Hoek C (1996) Temperature responses of tropical to warm-temperate Atlantic seaweeds. I. Absence of ecotypic differentiation in amphi-Atlantic tropical-Canary Islands species. Eur J Phycol 31:123–132

    Google Scholar 

  • Pearson G, Kautsky L, Serrão E (2000) Recent evolution in Baltic Fucus vesiculosus: reduced tolerance to emersion stresses compared to intertidal (North Sea) populations. Mar Ecol Prog Ser 202:67–79

    Google Scholar 

  • Pereyra RT, Bergström L, Kautsky L, Johannesson K (2009) Rapid speciation in a newly opened postglacial marine environment, the Baltic Sea. BMC Evol Biol 9:70

    PubMed Central  PubMed  Google Scholar 

  • Pfannschmidt T, Nilsson A, Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397:625–628

    CAS  Google Scholar 

  • Pfetzing J, Stengel DB, Cuffe MM, Savage AV, Guiry MD (2000) Effects of temperature and prolonged emersion on photosynthesis, carbohydrate content and growth of the brown intertidal alga Pelvetia canaliculata. Bot Mar 43:399–407

    CAS  Google Scholar 

  • Pörtner HO, Storch D, Heilmayer O (2005) Constraints and trade-offs in climate-dependent adaptation: energy budgets and growth in a latitudinal cline. Sci Mar 69:271–285

    Google Scholar 

  • Provan J, Wattier RA, Maggs CA (2005) Phylogeographic analysis of the red seaweed Palmaria palmata reveals a Pleistocene marine glacial refugium in the English Channel. Mol Ecol 14:793–803

    CAS  PubMed  Google Scholar 

  • Raxworthy CJ, Ingram CM, Rabibisoa N, Pearson RG (2007) Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day Geckos (Phelsuma) from Madagascar. Syst Biol 56:907–923

    PubMed  Google Scholar 

  • Ree RH, Sanmartín I (2009) Prospects and challenges for parametric models in historical biogeographical inference. J Biogeogr 36:1211–1220

    Google Scholar 

  • Rivera M, Scrosati R (2006) Population dynamics of Sargassum lapazeanum (Fucales, Phaeophyta) from the Gulf of California, Mexico. Phycologia 45:178–189

    Google Scholar 

  • Robertson E, Baker N, Leech R (1993) Chloroplast thylakoid protein changes induced by low growth temperature in maize revealed by immunocytology. Plant Cell Environ 16:809–818

    CAS  Google Scholar 

  • Roeder V, Collén J, Rousvoal S, Corre E, Leblanc C, Boyen C (2005) Identification of stress gene transcripts in Laminaria digitata (Phaophyceae) protoplast cultures by expressed sequence tag analysis. J Phycol 41:1227–1235

    CAS  Google Scholar 

  • Savitch LV, Maxwell DP, Huner NPA (1996) Photosystem II excitation pressure and photosynthetic carbon metabolism in Chlorella vulgaris. Plant Physiol 111:127–136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Setchell WA (1920) The temperature interval in the geographical distribution of marine algae. Science 53:187–190

    Google Scholar 

  • Sharkey TD (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, Rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ 28:269–277

    CAS  Google Scholar 

  • Smith CM, Berry JA (1986) Recovery of photosynthesis after exposure of intertidal algae to osmotic and temperature stresses: comparative studies of species with differing distributional limits. Oecologia 70:6–12

    Google Scholar 

  • Somero GN (2004) Temperature adaptation of proteins: searching for basic “strategies”. Comp Biochem Physiol 139:321–333

    Google Scholar 

  • Sorensen JG, Kristensen TN, Loeschke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037

    Google Scholar 

  • Stanley MS, Perry RM, Callow JA (2005) Analysis of expressed sequence tags from the green alga Ulva linza (Chlorophyta). J Phycol 41:1219–1226

    CAS  Google Scholar 

  • Stengel DB, Dring MJ (1997) Morphology and in situ growth rates of plants of Ascophyllum nodosum (Phaeophyta) from different shore levels and responses of plants to vertical transplantation. Eur J Phycol 32:193–202

    Google Scholar 

  • Steponkus PL, Webb MS (1992) Freeze-induced dehydration and membrane destabilization in plants. In: Somero G, Osmond B (eds) Water and life: comparative analysis of water relationships at the organismic, cellular and molecular level. Springer, Berlin, pp 338–362

    Google Scholar 

  • Szalontai B, Nishiyama Y, Gombos Z, Murata N (2000) Membrane dynamics as seen by Fourier transform infrared spectroscopy in a cyanobacterium, Synechocystis PCC 6803. The effects of lipid unsaturation and the protein-to-lipid ratio. Biochim Biophys Acta 1509:409–419

    CAS  PubMed  Google Scholar 

  • Terrados J, Ros J (1992) The influence of temperature on seasonal variation of Caulerpa prolifera (Forsskal) Lamouroux photosynthesis and respiration. J Exp Mar Biol Ecol 162:199–212

    Google Scholar 

  • tom Dieck I (1992) North Pacific and North Atlantic digitate Laminaria species (Phaeophyta): hybridization experiments and temperature responses. Phycologia 31:147–163

    Google Scholar 

  • tom Dieck I (1993) Temperature tolerance and survival in darkness of kelp gametophytes (Laminariales, Phaeophyta): ecological and biogeographical implications. Mar Ecol Prog Ser 100:253–264

    Google Scholar 

  • tom Dieck I, Oliveira EC (1993) The section Digitate of the genus Laminaria (Phaeophyta) in the northern and southern Atlantic: crossing experiments and temperature responses. Mar Biol 115:151–160

    Google Scholar 

  • Tomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–7

    Google Scholar 

  • Turesson G (1922) The genotypical response of the plant species to the habitat. Hereditas 3:211–350

    Google Scholar 

  • Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O (2011) Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecol Biogeogr. doi:10.1111/j.1466-8238.2011.00656.x

  • van den Hoek C (1982a) Phytogeographic distribution groups of benthic marine algae in the North Atlantic Ocean: a review of experimental evidence from life history studies. Helgol Meeresunters 35:153–214

    Google Scholar 

  • van den Hoek C (1982b) The distribution of benthic marine algae in relation to the temperature regulation of their life histories. Biol J Linn Soc 18:81–144

    Google Scholar 

  • Verbruggen H, Tyberghein L, Pauly K, Vlaeminck C, van Nieuwenhuyze K, Kooistra WHCF, Leliaert F, De Clerck O (2009) Macroecology meets macroevolution: evolutionary niche dynamics in the seaweed Halimeda. Global Ecol Biogeogr 18:393–405

    Google Scholar 

  • Vigh L, Maresca B, Harwood JL (1998) Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem Sci 23:369–374

    CAS  PubMed  Google Scholar 

  • Wattier R, Maggs CA (2001) Intraspecific variation in seaweeds: The application of new tools and approaches. Adv Bot Res 35:171–212

    Google Scholar 

  • Wiencke C, Rahmel J, Karsten U, Weykam G, Kirst G (1993) Photosynthesis of marine macroalgae from Antarctica: Light and temperature requirements. Bot Acta 106:78–87

    Google Scholar 

  • Wiencke C, Bartsch I, Bischoff B, Peters AF, Breeman AM (1994) Temperature requirements and biogeography of Antarctic, Arctic and amphiequatorial seaweeds. Bot Mar 37:247–259

    Google Scholar 

  • Wiencke C, Gómez I, Dunton K (2009) Phenology and seasonal physiological performance of polar seaweeds. Bot Mar 52:585–592

    CAS  Google Scholar 

  • Wilson KE, Huner NPA (2000) The role of growth rate, redox-state of the plastoquinone pool and the trans-thylakoid ΔpH in photoacclimation of Chlorella vulgaris to growth irradiance and temperature. Planta 212:93–102

    CAS  PubMed  Google Scholar 

  • Wilson KE, Król M, Huner NPA (2003a) Temperature-induced greening of Chlorella vulgaris: The role of the cellular energy balance and zeaxanthin-dependent nonphotochemical queniching. Planta 217:616–627

    CAS  PubMed  Google Scholar 

  • Wilson KE, Sieger SM, Huner NPA (2003b) The temperature-dependent accumulation of Mg-protophorphyrin IX and reactive oxygen species in Chlorella vulgaris. Physiol Planta 119:126–136

    CAS  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    CAS  PubMed  Google Scholar 

  • Zuccarello GC, Buchanan J, West JA (2006) Increased sampling for inferring phylogeographic patterns in Bostrychia radicans/B. moritziana (Rhodomelaceae, Rhodophyta) in the eastern USA. J Phycol 42:1349–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Eggert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eggert, A. (2012). Seaweed Responses to Temperature. In: Wiencke, C., Bischof, K. (eds) Seaweed Biology. Ecological Studies, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28451-9_3

Download citation

Publish with us

Policies and ethics