Skip to main content

Floating Seaweeds and Their Communities

  • Chapter
  • First Online:
Seaweed Biology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 219))

Abstract

A wide diversity of floating seaweeds is found in temperate and subpolar regions of the world’s oceans where sea surface currents and winds determine their traveling velocities and directions. The importance of floating seaweeds as dispersal agents for associated organisms and for the algae themselves varies depending on the supply from benthic source populations and on their persistence at the sea surface. Persistence of floating algae depends on water temperature, grazing activity, epifaunal load, and, to a lesser extent, on prevailing irradiance conditions. In temperate regions, persistence of floating algae is primarily limited by warm sea surface temperatures and high densities of motile and sessile epifauna whereas at higher latitudes algae can successfully compensate grazer-induced tissue loss by continuous growth at the prevailing low water temperatures. Accordingly, floating seaweeds can bridge large oceanic distances especially at high latitudes allowing for connectivity among distant benthic populations of algae and associated rafters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Buchanan J, Zuccarello GC (2012) Decoupling of short and long distance dispersal pathways in the endemic New Zealand seaweed Carpophyllum maschalocarpum (Phaeophyceae, Fucales). J Phycol. doi:10.1111/j.1529-8817.2012.01167.x

  • Carr AF (1986) Rips, FADs, and little loggerheads. Bioscience 36:92–100

    Article  Google Scholar 

  • Cerda O, Karsten U, Rothäusler E, Tala F, Thiel M (2009) Compensatory growth of the kelp Macrocystis integrifolia (Phaeophyceae, Laminariales) against grazing of Peramphithoe femorata (Amphipoda, Ampithoidae) in northern-central Chile. J Exp Mar Biol Ecol 377:61–67

    Article  Google Scholar 

  • Cerda O, Hinojosa IA, Thiel M (2010) Nest-building behavior by the amphipod Peramphithoe femorata (Krøyer) on the kelp Macrocystis pyrifera (Linnaeus) C Agardh from northern-central Chile. Biol Bull 218:248–258

    PubMed  Google Scholar 

  • Cheang CC, Chu KH, Ang PO (2010) Phylogeography of the marine macroalga Sargassum hemiphyllum (Phaeophyceae, Heterokontophyta) in northwestern Pacific. Mol Ecol 19:2933–2948

    Article  PubMed  CAS  Google Scholar 

  • Coleman MA, Kelaher BP (2009) Connectivity among fragmented populations of a habitat-forming alga, Phyllospora comosa (Phaeophyceae, Fucales) on an urbanised coast. Mar Ecol Prog Ser 381:63–70

    Article  Google Scholar 

  • Coyer JA, Hoarau G, Costa JF, Hogerdijk B, Serrao EA, Billard E, Valero M, Pearson GA, Olsen JL (2011) Evolution and diversification within the intertidal brown macroalgae Fucus spiralis/F. vesiculosus species complex in the North Atlantic. Mol Phylogenet Evol 58:283–296

    Article  PubMed  CAS  Google Scholar 

  • Dayton PK, Currie V, Gerrodette T, Keller BD, Rosenthal RJ, Van Tresca D (1984) Patch dynamics and stability of some California kelp communities. Ecol Monogr 54:253–289

    Article  Google Scholar 

  • Dayton PK, Tegner MJ, Edwards PB, Riser KL (1999) Temporal and spatial scales of kelp demography: the role of oceanographic climate. Ecol Monogr 69:219–250

    Article  Google Scholar 

  • Edgar GJ (1987) Dispersal of fauna and floral propagules associated with drifting Macrocystis pyrifera plants. Mar Biol 95:599–610

    Article  Google Scholar 

  • Faller AJ, Woodcock AH (1964) The spacing of windrows of Sargassum in the ocean. J Mar Res 22:22–29

    Google Scholar 

  • Farlow WG (1914) The vegetation of the Sargasso Sea. Proc Am Philos Soc 53:257–262

    Google Scholar 

  • Franke HD, Gutow L, Janke M (1999) The recent arrival of the oceanic isopod Idotea metallica Bosc off Helgoland (German Bight, North Sea): an indication of a warming trend in the North Sea? Helgoländer Meeresun 52:347–357

    Article  Google Scholar 

  • Fraser CI, Nikula R, Spencer HG, Waters JM (2009) Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. Proc Natl Acad Sci USA 106:3249–3253

    Article  PubMed Central  PubMed  Google Scholar 

  • Fraser CI, Thiel M, Spencer H, Waters J (2010) Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp. BMC Evol Biol 10:203

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fraser CI, Nikula R, Waters JM (2011) Oceanic rafting by a coastal community. Proc R Soc B 278:649–655

    Article  PubMed Central  PubMed  Google Scholar 

  • Gagnon K, McKindsey CW, Johnson LE (2011) Dispersal potential of invasive algae: the determinants of buoyancy in Codium fragile ssp. fragile. Mar Biol 158:2449–2458

    Article  Google Scholar 

  • Gower J, King S (2008) Satellite images show the movement of floating Sargassum in the Gulf of Mexico and Atlantic Ocean. Nat Proc (hdl:10101/npre.2008.1894.1)

    Google Scholar 

  • Gower J, Hu C, Borstard G, King S (2006) Ocean color satellites show extensive lines of floating Sargassum in the Gulf of Mexico. IEEE T Geosci Remote 44:3619–3625

    Article  Google Scholar 

  • Graham MH, Harrold C, Lisin S, Light K, Watanabe JM, Foster MS (1997) Population dynamics of giant kelp Macrocystis pyrifera along a wave exposure gradient. Mar Ecol Prog Ser 148:269–279

    Article  Google Scholar 

  • Graham MH, Vásquez JA, Buschmann AH (2007) Global ecology of the giant kelp Macrocystis: from ecotypes to ecosystems. Oceanogr Mar Biol Annu Rev 45:39–88

    Google Scholar 

  • Gutow L (2003) Local population persistence as a pre-condition for large-scale dispersal of Idotea metallica (Crustacea, Isopoda) on drifting habitat patches. Hydrobiologia 503:45–48

    Article  Google Scholar 

  • Gutow L, Gimenez L, Boos K, Saborowski R (2009) Rapid changes in the epifaunal community after detachment of buoyant benthic macroalgae. J Mar Biol Assoc UK 89:323–328

    Article  Google Scholar 

  • Hanisak MD, Samuel MA (1987) Growth rates in culture of several species of Sargassum from Florida, USA. Hydrobiologia 151–152:399–404

    Article  Google Scholar 

  • Harries DB, Cook E, Donnan DW, Mair JM, Harrow S, Wilson JR (2007) The establishment of the invasive alga Sargassum muticum on the west coast of Scotland: Rapid northwards spread and identification of potential new areas for colonization. Aquat Invas 2:367–377

    Article  Google Scholar 

  • Harrold C, Lisin S (1989) Radio-tracking rafts of giant kelp: local production and regional transport. J Exp Mar Biol Ecol 130:237–251

    Article  Google Scholar 

  • Helmuth B, Veit RR, Holberton R (1994) Long-distance dispersal of a subantarctic brooding bivalve (Gaimardia trapesina) by kelp-rafting. Mar Biol 120:421–442

    Article  Google Scholar 

  • Hepburn CD, Hurd CL, Frew RD (2006) Colony structure and seasonal differences in light and nitrogen modify the impact of sessile epifauna on the giant kelp Macrocystis pyrifera (L.) C Agardh. Hydrobiologia 560:373–384

    Article  Google Scholar 

  • Hernández-Carmona G, Hughes B, Graham M (2006) Reproductive longevity of drifting kelp Macrocystis pyrifera (Phaeophyceae) in Monterey Bay, USA. J Phycol 42:1199–1207

    Article  Google Scholar 

  • Hinojosa I, González E, Ugalde P, Valdivia N, Macaya E, Thiel M (2007) Distribution and abundance of floating seaweeds and their associated peracarid fauna in the fjords and channels of the XI. Region, Chile. Cienc Tecnol Mar (Chile) 30:37–50

    Google Scholar 

  • Hinojosa IA, Pizarro M, Ramos M, Thiel M (2010) Spatial and temporal distribution of floating kelp in the channels and fjords of southern Chile. Est Coast Shelf Sci 87:367–377

    Article  Google Scholar 

  • Hinojosa IA, Rivadeneira MM, Thiel M (2011) Temporal and spatial distribution of floating objects in coastal waters of central-southern Chile and Patagonian fjords. Cont Shelf Res 31:172–186

    Article  Google Scholar 

  • Hirata T, Tanaka J, Iwami T, Ohmi T, Dazai A, Aoki M, Ueda H, Tsuchiya Y, Sato S, Yokohama Y (2001) Ecological studies on the community of drifting seaweeds in the south-eastern coastal waters of Izu Peninsula, central Japan. I: Seasonal changes of plants in species composition, appearance, number of species and size. Phycol Res 49:215–229

    Article  Google Scholar 

  • Hobday AJ (2000a) Age of drifting Macrocystis pyrifera (L.) C. Agardh rafts in the Southern California Bight. J Exp Mar Biol Ecol 253:97–114

    Article  PubMed  Google Scholar 

  • Hobday AJ (2000b) Abundance and dispersal of drifting kelp Macrocystis pyrifera rafts in the Southern California Bight. Mar Ecol Prog Ser 195:101–116

    Article  Google Scholar 

  • Hooker JD (1847) Algae. In: The botany of the Antarctic voyage of H.M. Discovery Ships Erebus and Terror in the years 1839–1843. I. Flora Antarctica, Part 2. Reeve, London, pp 454–502

    Google Scholar 

  • Hurd CL, Durante KM, Chia FS, Harrison PJ (1994) Effect of bryozoan colonization on inorganic nitrogen acquisition by the kelps Agarum fimbriatum and Macrocystis integrifolia. Mar Biol 121:167–173

    Article  Google Scholar 

  • Hurd CL, Durante KM, Harrison PJ (2000) Influence of bryozoan colonization on the physiology of the kelp Macrocystis integrifolia (Laminariales, Phaeophyta) from nitrogen-rich and -poor sites in Barkley Sound, British Columbia, Canada. Phycologia 39:435–440

    Article  Google Scholar 

  • Ingólfsson A (1995) Floating clumps of seaweed around Iceland: natural microcosms and a means of dispersal for shore fauna. Mar Biol 122:13–21

    Article  Google Scholar 

  • Ingólfsson A (1998) Dynamics of macrofaunal communities of floating seaweed clumps off western Iceland: a study patches on the surface of the sea. J Exp Mar Biol Ecol 231:119–137

    Article  Google Scholar 

  • John DM (1974) New records of Ascophyllum nodosum (L.) Le Jol. from the warmer parts of the Atlantic Ocean. J Phycol 10:243–244

    Google Scholar 

  • Johnson DL, Richardson PL (1977) On the wind-induced sinking of Sargassum. J Exp Mar Biol Ecol 28:255–267

    Article  Google Scholar 

  • Karsten U, Bischof K, Wiencke C (2001) Photosynthetic performance of Arctic macroalgae after transplantation from deep to shallow waters. Oecologia 127:11–20

    Article  Google Scholar 

  • Kingsford MJ (1992) Drift algae and small fish in coastal waters of northeastern New Zealand. Mar Ecol Prog Ser 80:41–55

    Article  Google Scholar 

  • Kingsford MJ (1993) Biotic and abiotic structure in the pelagic environment: importance to small fishes. Bull Mar Sci 53:393–415

    Google Scholar 

  • Kingsford MJ (1995) Drift algae—a contribution to near-shore habitat complexity in the pelagic environment and an attractant for fish. Mar Ecol Prog Ser 116:297–301

    Article  Google Scholar 

  • Kingsford MJ, Choat JH (1985) The fauna associated with drift algae captured with a plankton-mesh purse seine net. Limnol Oceanogr 30:618–630

    Article  Google Scholar 

  • Kingsford MJ, Choat JH (1986) Influence of surface slicks on the distribution and onshore movement of small fish. Mar Biol 91:161–171

    Article  Google Scholar 

  • Komatsu T, Daisuke Matsunaga D, Mikami A, Sagawa T, Boisnier E, Tatsukawa K, Aoki M, Ajisaka T, Uwai S, Tanaka K, Ishida K, Tanoue H, Sugimoto T (2008) Abundance of drifting seaweeds in eastern East China Sea. J Appl Phycol 20:801–809

    Article  Google Scholar 

  • Lapointe BE (1995) A comparison of nutrient-limited productivity in Sargassum natans from neritic vs. oceanic waters of the western North Atlantic Ocean. Limnol Oceanogr 40:625–633

    Article  CAS  Google Scholar 

  • Lüning K (1990) Seaweeds: their environment. Biogeography and ecophysiology. Wiley, New York

    Google Scholar 

  • Macaya EC, Zuccarello GC (2010) Genetic structure of the giant kelp Macrocystis pyrifera along the southeastern Pacific. Mar Ecol Prog Ser 420:103–112

    Article  Google Scholar 

  • Macaya EC, Boltaña S, Hinojosa IA, Macchiavello JE, Valdivia NA, Vásquez N, Buschmann AH, Vásquez J, Vega JMA, Thiel M (2005) Presence of sporophylls in floating kelp rafts of Macrocystis spp. (Phaeophyceae) along the Chilean Pacific coast. J Phycol 41:915–922

    Article  Google Scholar 

  • Marmorino GO, Miller WD, Smith GB, Bowles JH (2011) Airborne imagery of a disintegrating Sargassum drift line. Deep Sea Res 58:316–321

    Article  Google Scholar 

  • Miranda L, Thiel M (2008) Active and passive migration in boring isopods Limnoria spp. (Crustacea, Peracarida) from kelp holdfasts. J Sea Res 60:176–183

    Article  Google Scholar 

  • Mitchell CT, Hunter JR (1970) Fishes associated with drifting kelp, Macrocystis pyrifera, off the coast of southern California and northern Baja California. Calif Fish Game 56:288–297

    Google Scholar 

  • Muhlin JF, Engel CR, Stessel R, Weatherbee RA, Brawley SH (2008) The influence of coastal topography, circulation patterns, and rafting in structuring populations of an intertidal alga. Mol Ecol 17:1198–1210

    Article  PubMed  CAS  Google Scholar 

  • Muñoz J, Cancino JM, Molina MX (1998) Effect of encrusting bryozoans on the physiology of their algal substratum. J Mar Biol Assoc UK 71:877–882

    Article  Google Scholar 

  • Nikula R, Fraser CI, Spencer HG, Waters JM (2010) Circumpolar dispersal by rafting in two subantarctic kelpdwelling crustaceans. Mar Ecol Prog Ser 405:221–230

    Article  CAS  Google Scholar 

  • Ohno M (1984) Observations on the floating seaweeds of near-shore waters of southern Japan. Hydrobiologia 116(117):408–412

    Article  Google Scholar 

  • Olsen JL, Zechman FW, Hoarau G, Coyer JA, Stam WT, Valero M, Aberg P (2010) The phylogeographic architecture of the fucoid seaweed Ascophyllum nodosum: an intertidal ‘marine tree’ and survivor of more than one glacial-interglacial cycle. J Biogeogr 37:842–856

    Article  Google Scholar 

  • Parker T, Tunnycliffe V (1994) Dispersal strategies of the biota of an oceanic seamount: implications for ecology and biogeography. Biol Bull 187:336–345

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Parr AE (1939) Quantitative observations on the pelagic Sargassum vegetation of the western North Atlantic. Bull Bingham Oceanogr Coll 6:1–94

    Google Scholar 

  • Rothäusler E, Gómez I, Hinojosa IA, Karsten U, Tala F, Thiel M (2009) Effect of temperature and grazing on growth and reproduction of floating Macrocystis spp. (Phaephyceae) along a latitudinal gradient. J Phycol 45:547–559

    Article  Google Scholar 

  • Rothäusler E, Gómez I, Karsten U, Tala F, Thiel M (2011a) UV-radiation versus grazing pressure: long-term floating of kelp rafts (Macrocystis pyrifera) is facilitated by efficient photoacclimation but undermined by grazing losses. Mar Biol 158:127–141

    Article  Google Scholar 

  • Rothäusler E, Gómez I, Hinojosa IA, Karsten U, Tala F, Thiel M (2011b) Physiological performance of floating giant kelp Macrocystis pyrifera (Phaeophyceae): Latitudinal variability in the effects of temperature and grazing. J Phycol 47:269–281

    Article  Google Scholar 

  • Rothäusler E, Gómez I, Karsten U, Tala F, Thiel M (2011c) Physiological acclimation of floating Macrocystis pyrifera to temperature and irradiance ensures long-term persistence at the sea surface at mid-latitudes. J Exp Mar Biol Ecol 405:33–41

    Article  Google Scholar 

  • Rothäusler E, Gómez I, Hinojosa IA, Karsten U, Miranda L, Tala F, Thiel M (2011d) Kelp rafts in the Humboldt Current: Interplay of abiotic and biotic factors limit their floating persistence and dispersal potential. Limnol Oceanogr 56:1751–1763

    Google Scholar 

  • Rueness J (1989) Sargassum muticum and other introduced Japanese macroalgae. Mar Poll Bull 20:173–176

    Article  Google Scholar 

  • Schoener A, Rowe GT (1970) Pelagic Sargassum and its presence among the deep sea benthos. Deep Sea Res 17:923–925

    Google Scholar 

  • Schofield O, Evens TJ, Millie DF (1998) Photosystem II quantum yields and xanthophyll-cycle pigments of the macroalga Sargassum natans (Phaeophyceae): responses under natural sunlight. J Phycol 34:104–112

    Article  CAS  Google Scholar 

  • Segawa S, Sawada T, Higaki M, Yoshida T, Kamura S (1961) The floating seaweeds of the sea west of Kyushu. Rec Oceanogr Work Jpn 5:179–186

    Google Scholar 

  • Segawa S, Sawada T, Higaki M, Yoshida T, Ohshiro H, Hayashida F (1962) Some comments on the movement of the floating seaweeds. Rec Oceanogr Work Jpn 6:153–159

    Google Scholar 

  • Senta T (1962) Studies on floating seaweeds in early summer around Oki Islands and larvae and juveniles of fish accompanying them. Physiol Ecol 10:68–78

    Google Scholar 

  • Smith SDA (2002) Kelp rafts in the Southern Ocean. Global Ecol Biogeogr 2:67–69

    Article  Google Scholar 

  • Stewart HL (2008) The role of spatial and ontogenetic morphological variation in the expansion of the geographic range of the tropical brown alga, Turbinaria ornata. Integr Comp Biol 48:713–719

    Article  PubMed  Google Scholar 

  • Susini ML, Thibaut T, Meinesz A, Forcioli D (2007) A preliminary study of genetic diversity in Cystoseira amentacea (C. Agardh) Bory var. stricta Montagne (Fucales, Phaeophyceae) using random amplified polymorphic DNA. Phycologia 46:605–611

    Article  Google Scholar 

  • Swanson AK, Druehl LD (2002) Induction, exudation and the UV protective role of kelp phlorotannins. Aquat Bot 73:241–253

    Article  CAS  Google Scholar 

  • Tapia FJ, Pineda J, Ocampo-Torres FJ, Fuchs HL, Parnell PE, Montero P, Ramos S (2004) High-frequency observations of wind-forced onshore transport at a coastal site in Baja California. Cont Shelf Res 24:1573–1585

    Article  Google Scholar 

  • Thiel M (2003) Rafting of benthic macrofauna: important factors determining the temporal succession of the assemblage on detached macroalgae. Hydrobiologia 503:49–57

    Article  Google Scholar 

  • Thiel M, Gutow L (2005a) The ecology of rafting in the marine environment I. The floating substrata. Oceanogr Mar Biol Annu Rev 42:181–263

    Google Scholar 

  • Thiel M, Gutow L (2005b) The ecology of rafting in the marine environment II. The rafting organisms and community. Oceanogr Mar Biol Annu Rev 43:279–418

    Google Scholar 

  • Thiel M, Haye PA (2006) The ecology of rafting in the marine environment III. Biogeographical and evolutionary consequences. Oceanogr Mar Biol Annu Rev 44:323–429

    Google Scholar 

  • Thiel M, Hinojosa IA, Joschko T, Gutow L (2011) Spatio-temporal distribution of floating objects in the German Bight (North Sea). J Sea Res 65:368–379

    Article  Google Scholar 

  • Tsikhon-Lukanina EA, Reznichenko OG, Nikolaeva GG (2001) Ecology of invertebrates on the oceanic floating substrata in the Northwest Pacific Ocean. Oceanology 41:525–530

    Google Scholar 

  • Tully O, Ó Céidigh P (1986) The ecology of Idotea species (Isopoda) and Gammarus locusta (Amphipoda) on surface driftweed in Galway Bay (west of Ireland). J Mar Biol Assoc UK 66:931–942

    Article  Google Scholar 

  • Uwai S, Kogame K, Yoshida G, Kawai H, Ajisaka T (2009) Geographical genetic structure and phylogeography of the Sargassum horneri/filicinum complex in Japan, based on the mitochondrial cox3 haplotype. Mar Biol 156:901–911

    Article  Google Scholar 

  • Vandendriessche S, De Keersmaecker G, Vincx M, Degraer S (2006) Food and habitat choice in floating seaweed clumps: the obligate opportunistic nature of the associated macrofauna. Mar Biol 149:1499–1507

    Article  Google Scholar 

  • Vandendriessche S, Vincx M, Degraer S (2007a) Floating seaweed and the influences of temperature, grazing and clump size on raft longevity—A microcosm study. J Exp Mar Biol Ecol 343:64–73

    Article  Google Scholar 

  • Vandendriessche S, Stienen EWM, Vincx M, Degraer S (2007b) Seabirds foraging at floating seaweeds in the Northeast Atlantic. Ardea 95:289–298

    Article  Google Scholar 

  • Vásquez JA (1993) Effects on the animal community of dislodgement of holdfasts of Macrocystis pyrifera. Pac Sci 47:180–184

    Google Scholar 

  • Waters JM (2008) Driven by the West Wind Drift? A synthesis of southern temperate marine biogeography, with new directions for dispersalism. J Biogeogr 35:417–427

    Article  Google Scholar 

  • Yoshida T (1963) Studies on the distribution and drift of the floating seaweed. Bull Tohoku Reg Fish Res Lab 23:141–186

    Google Scholar 

Download references

Acknowledgements

ER and MT were supported through FONDECYT 1100749 during the preparation of this contribution. ER is grateful for a JSPS Research Fellowship from the Japan Society for the Promotion of Science for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Thiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rothäusler, E., Gutow, L., Thiel, M. (2012). Floating Seaweeds and Their Communities. In: Wiencke, C., Bischof, K. (eds) Seaweed Biology. Ecological Studies, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28451-9_17

Download citation

Publish with us

Policies and ethics