Skip to main content

Seaweeds and Their Communities in Polar Regions

  • Chapter
  • First Online:
Seaweed Biology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 219))

Abstract

Polar seaweeds typically begin to grow in late winter–spring, around the time of sea-ice breakup. They can grow under very low light enabling distributions to depths of 40 m. Moreover, they are physiologically adapted to low temperatures. Intertidal species exhibit a remarkable stress tolerance against freezing, desiccation, and salinity changes. Endemism is much greater in the Antarctic compared to the Arctic species. On rocky shores of the Antarctic Peninsula and of Spitsbergen >80% of the bottom can be covered by seaweeds with standing biomass levels 20 kg wet wt m2. Species richness and biomass declines, however, toward higher latitudes. Seaweeds are the dominant organisms in coastal waters and thus play important roles in benthic food webs and are likely to be of particular importance to benthic detrital food chains. Chemical defenses against herbivores are common in Antarctic, but not in Arctic seaweeds. More research is needed especially to study the effects of global climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adey WH, Lindstrom SC, Hommersand MH, Müller KM (2008) The biogeographic origin of Arctic endemic seaweeds: a thermogeographic view. J Phycol 44:1384–1394

    Google Scholar 

  • Aguilera J, Bischof K, Karsten U, Hanelt D, Wiencke C (2002) Seasonal variation in ecological patterns in macroalgae from an Arctic fjord II. Pigment accumulation and biochemical defence systems against high light stress. Mar Biol 140:1087–1095

    CAS  Google Scholar 

  • Alongi G, Cormaci M, Furnari G (2002) The Corallinaceae (Rhodophyta) from the Ross Sea (Antarctica): a taxonomic revision rejects all records except Phymatolithon foecundum. Phycologia 41:140–146

    Google Scholar 

  • Amsler CD, Rowley RJ, Laur DR, Quetin LB, Ross RM (1995) Vertical distribution of Antarctic Peninsular macroalgae: cover, biomass, and species composition. Phycologia 34:424–430

    Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (1998) Chemical defense against herbivory in the Antarctic marine macroalgae Iridaea cordata and Phyllophora antarctica (Rhodophyceae). J Phycol 34:53–59

    CAS  Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (1999) An antarctic feeding triangle: defensive interactions between macroalgae, sea urchins, and sea anemones. Mar Ecol Prog Ser 183:105–114

    Google Scholar 

  • Amsler CD, Iken K, McClintock JB, Amsler MO, Peters KJ, Hubbard JM, Furrow FB, Baker BJ (2005a) Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula. Mar Ecol Prog Ser 294:141–159

    CAS  Google Scholar 

  • Amsler CD, Okogbue IN, Landry DM, Amsler MO, McClintock JB, Baker BJ (2005b) Potential chemical defenses against diatom fouling in Antarctic macroalgae. Bot Mar 48:318–322

    Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (2008) Macroalgal chemical defenses in polar marine communities. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 91–103

    Google Scholar 

  • Amsler CD, Amsler MO, McClintock JB, Baker BJ (2009) Filamentous algal endophytes in macrophytic Antarctic algae: prevalence in hosts and palatability to mesoherbivores. Phycologia 48:324–334

    Google Scholar 

  • Amsler CD, Iken K, McClintock JB, Baker BJ (2011) Defenses of polar macroalgae against herbivores and biofoulers. In: Wiencke C (ed) Biology of polar benthic algae. De Gruyter, Berlin, pp 101–120

    Google Scholar 

  • Andersson B, Salter AH, Virgin I, Vass I, Styring S (1992) Photodamage to photosystem II-primary and secondary events. J Photochem Photobiol B: Biol 15:15–31

    Google Scholar 

  • Apt KE (1988) Ethiology and development of hyperplasia induced by Streblonema sp. (Phaeophyta) on members of the Laminariales (Phaeophyta). J Phycol 24:28–34

    Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    PubMed  CAS  Google Scholar 

  • Aumack CF, Amsler CD, McClintock JB, Baker BJ (2010) Chemically mediated resistance to mesoherbivory in finely branched macroalgae along the western Antarctic Peninsula. Eur J Phycol 45:19–26

    Google Scholar 

  • Aumack CF, Amsler CD, McClintock JB, Baker BJ (2011) Impacts of mesograzers on epiphyte and endophyte growth associated with chemically defended macroalge from the western Antarctic Peninsula: a mesocosm experiment. J Phycol 47:36–41

    Google Scholar 

  • Barnes D, Brockington S (2003) Zoobenthic biodiversity, biomass and abundance at Adelaide Island. Antarctica Mar Ecol Prog Ser 249:145–155

    Google Scholar 

  • Becker EW (1982) Physiological studies on Antarctic Prasiola crispa and Nostoc commune at low temperatures. Polar Biol 1:99–104

    CAS  Google Scholar 

  • Becker S, Walter B, Bischof K (2011) Freezing tolerance and photosynthetic performance of polar seaweeds at low temperatures. In: Wiencke C (ed) Biology of Polar Benthic Algae. De Gruyter, Berlin, pp 221–236

    Google Scholar 

  • Beuchel F, Gulliksen B (2008) Temporal patterns of benthic community development in an Arctic fjord (Kongsfjorden, Svalbard): results of a 24-year manipulation study. Polar Biol 31:913–924

    Google Scholar 

  • Bischoff B, Wiencke C (1993) Temperature requirements for growth and survival of macroalgae from Disko-Island (Greenland). Helgol Mar Res 47:167–191

    Google Scholar 

  • Bischoff B, Wiencke C (1995) Temperature ecotypes and biogeography of Acrosiphoniales (Chlorophyta) with Arctic-Antarctic disjunct and Arctic/cold-temperate distributions. Eur J Phycol 30:19–27

    Google Scholar 

  • Bischoff-Bäsmann B, Wiencke C (1996) Temperature requirements for growth and survival of Antarctic Rhodophyta. J Phycol 32:525–535

    Google Scholar 

  • Bolton JJ, Lüning K (1983) Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture. Mar Biol 66:89–94

    Google Scholar 

  • Bowden DA (2005) Quantitative characterization of shallow marine benthic assemblages at Ryder Bay, Adelaide Island. Antarctica. Mar Biol 146:1235–1249

    Google Scholar 

  • Brouwer PEM (1996a) In situ photosynthesis and estimated annual production of the red macroalga Myriogramme mangini in relation to underwater irradiance at Signy Island (Antarctica). Antarctic Sci 8:245–252

    Google Scholar 

  • Brouwer PEM (1996b) Decomposition in situ of the sublittoral Antarctic macroalga Desmarestia anceps Montagne. Polar Biol 16:129–137

    Google Scholar 

  • Brouwer PEM, Geilen EFM, Gremmen NJM, van Lent F (1995) Biomass, cover and zonation pattern of sublittoral macroalgae at Signy Island, South Orkney Islands. Antarctica. Bot Mar 38:259–270

    Google Scholar 

  • Busdosh M, Beehler CL, Robillard GA, Tarbox KR (1983) Distribution and abundance of kelp in the Alaskan Beaufort Sea near Prudhoe Bay. Arctic 38:18–22

    Google Scholar 

  • Campana GL, Zacher K, Fricke F, Molis M, Wulff A, Quartino ML, Wiencke C (2011) Drivers of colonization and succession in polar benthic macro- and microalgal communities. In: Wiencke C (ed) Biology of polar benthic algae. De Gruyter, Berlin, pp 299–320

    Google Scholar 

  • Cattaneo-Vietti R, Chiantore M, Gambi MC, Albertelli G, Cormaci M, Di Geronimo I (2000) Spatial and vertical distribution of benthic littoral communities in Terra Nova Bay. In: Faranda FM, Guglielmo L, Ianora A (eds) Ross sea ecology. Italiantartide expeditions (1985–1995). Springer, Berlin, pp 503–514

    Google Scholar 

  • Chapman ARO, Lindley JE (1980) Seasonal growth of Laminaria solidungula in the Canadian high Arctic in relation to irradiance and dissolved nutrient concentration. Mar Biol 57:1–5

    CAS  Google Scholar 

  • Chung H, Oh YS, Lee IK, Kim D-Y (1994) Macroalgal vegetation of Maxwell Bay in King George Island. Antarctica Korean J Phycol 9:47–58

    CAS  Google Scholar 

  • Clarke DL (1990) Arctic Ocean ice cover; Geologic history and climatic significance. In: Grantz A, Johnson L, Sweeney JL (eds) The arctic ocean region. Geol Soc, America, Boulder Colorado, pp 53–62

    Google Scholar 

  • Clarke A, Murphy EJ, Meredith MP, King JC, Peck LS, Barnes DKA, Smith RC (2007) Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos Trans R Soc B-Biol Sci 362:149–166

    Google Scholar 

  • Corbisier TN, Petti MAV, Skowronski RSP, Brito TAS (2004) Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): δ13C stable-isotope analysis. Polar Biol 27:75–82

    Google Scholar 

  • Cormaci M, Furnari G, Scammacca B (2000) The macrophytobenthos of Terra Nova Bay. In: Faranda FM, Guglielmo L, Ianora A (eds) Ross Sea Ecology. Italiantartide Expeditions (1987-1995). Springer, Berlin, pp 493-502

    Google Scholar 

  • Correa JA, Sánchez PA (1996) Ecological aspects of algal infectious diseases. Hydrobiologia 326–327:89–95

    Google Scholar 

  • Crame JA (1993) Latitudinal range fluctuations in the marine realm through geological time. Trends Ecol Evol 8:162–266

    Google Scholar 

  • Dawson R, Schramm W, Bolter M (1985) Factors influencing the production, decomposition and distribution of organic matter in Admirality Bay, King George Island. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 109–114

    Google Scholar 

  • DeLaca TE, Lipps JH (1976) Shallow water marine associations. Antarctic Peninsula. Antarctic J US 11:12–20

    Google Scholar 

  • Delépine R, Lamb IM, Zimmerman MH (1966) Preliminary report on the marine vegetation of the Antarctic Peninsula. Proc Int Seaweed Symp 5:107–116

    Google Scholar 

  • Dhargalkar V, Reddy C, Deshmukhe G, Unatawale A (1987) Biochemical composition of some benthic marine algae of the Vestfold Hills, Antarctica. Indian J Mar Sci 16:269–271

    Google Scholar 

  • Dhargalkar V, Burton H, Kirkwood J (1988) Animal associations with the dominant species of shallow water macrophytes along the coastline of the Vestfold Hills, Antarctica. Hydrobiologia 165:141–150

    Google Scholar 

  • Dieckmann G, Reichardt W, Zielinski D (1985) Growth and production of the seaweed, Himantothallus grandifolius, at King George Island. In: Siegfried WR, Condy P, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 104–108

    Google Scholar 

  • Drew EA, Hastings RM (1992) A year-round ecophysiological study of Himantothallus grandifolius (Desmarestiales, Phaeophyta) at Signy Island, Antarctica. Phycologia 31:262–277

    Google Scholar 

  • Dring MJ (2006) Stress resistance and disease resistance in seaweeds: The role of reactive oxygen metabolism. Adv Bot Res 43:175–207

    CAS  Google Scholar 

  • Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Vernet M, Fraser W (2007) Marine pelagic ecosystems: the west Antarctic Peninsula. Philos Trans R Soc B 362:67–94

    Google Scholar 

  • Dummermuth AL, Wiencke C (2003) Experimental investigation of seasonal development in six Antarctic red macroalgae. Antarct Sci 15:449–457

    Google Scholar 

  • Dunton KH (1985) Growth of dark-exposed Laminaria saccharina (L.) Lamour and Laminaria solidungula J. Ag (Laminariales: Phaeophyta) in the Alaskan Beaufort Sea. J Exp Mar Biol Ecol 94:181–189

    Google Scholar 

  • Dunton KH (1990) Growth and production in Laminaria solidungula: relation to continuous underwater light levels in the Alaskan high Arctic. Mar Biol 106:297–304

    Google Scholar 

  • Dunton KH (1992) Arctic biogeography: The paradox of the marine benthic fauna and flora. Trends Ecol Evol 7:183–189

    PubMed  CAS  Google Scholar 

  • Dunton K (2001) d15N and d13C measurements of Antarctic Peninsula fauna: trophic relationships and assimilation of benthic seaweeds. Am Zool 41:99–112

    Google Scholar 

  • Dunton KH, Schell DM (1986) Seasonal carbon budget and growth of Laminaria solidungula in the Alaskan High Arctic Mar. Ecol Prog Ser 31:57–66

    Google Scholar 

  • Dunton KH, Schell DM (1987) Dependence of consumers on macroalgal (Laminaria solidungula) carbon in an arctic kelp community. d13C evidence. Mar Biol 93:615–625

    CAS  Google Scholar 

  • Dunton KH, Schonberg SV (2000) The benthic faunal assemblage of the Boulder Patch kelp community. In: Johnson SR, Truett JC (eds) The natural history of an arctic oil field. Academic, San Diego, pp 372–397

    Google Scholar 

  • Dunton KH, Reimnitz E, Schonberg S (1982) An Arctic kelp community in the Alaskan Beaufort Sea. Arctic 35:465–484

    Google Scholar 

  • Elner R, Vadas RJ (1990) Inference in ecology: the sea urchin phenomenon in the northwest Atlantic. Am Nat 136:108–125

    Google Scholar 

  • Estes J, Duggins D (1995) Sea otter and kelp forests in Alaska: generality and variation in a community ecological paradigm. Ecol Monogr 65:75–100

    Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    Google Scholar 

  • Fischer G, Wiencke C (1992) Stable carbon isotope composition, depth distribution and fate of macroalgae from the Antarctic Peninsula region. Polar Biol 12:341–348

    Google Scholar 

  • Giordano MJ, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    PubMed  CAS  Google Scholar 

  • Gómez I, Wiencke C (1997) Seasonal growth and photosynthetic performance of the Antarctic macroalga Desmarestia menziesii (Phaeophyceae) cultivated under fluctuating Antarctic daylengths. Bot Acta 110:25–31

    Google Scholar 

  • Gómez I, Wiencke C, Weykam G (1995) Seasonal photosynthetic characteristics of the brown alga Ascoseira mirabilis from King George Island (Antarctica). Mar Biol 123:167–172

    Google Scholar 

  • Gómez I, Wiencke C, Thomas DN (1996) Variations in photosynthetic characteristics of the Antarctic marine brown alga Ascoseira mirabilis in relation to thallus age and size. Eur J Phycol 31:167–172

    Google Scholar 

  • Gómez I, Weykam G, Klöser H, Wiencke C (1997) Photosynthetic light requirements, daily carbon balance and zonation of sublittoral macroalgae from King George Island (Antarctica). Mar Ecol Progr Ser 148:281–293

    Google Scholar 

  • Gómez I, Wulff A, Roleda MY, Huovinen P, Karsten U, Quartino ML, Dunton K, Wiencke C (2011) Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. In: Wiencke C (ed) Biology of polar benthic algae. De Gruyter, Berlin, pp 195–220

    Google Scholar 

  • Hanelt D (1998) Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar Biol 131:361–369

    Google Scholar 

  • Hanelt D, Jaramillo J, Nultsch W, Senger S, Westermeier R (1994) Photoinhibitioin as a regulative mechanism of photosynthesis in marine algae of Antarctica. Ser Cient INACH 44:67–77

    Google Scholar 

  • Hanelt D, Melchersmann B, Wiencke C, Nultsch W (1997) Effects of high light stress on photosynthesis of polar macroalgae in relation to depth distribution. Mar Ecol Prog Ser 149:255–266

    CAS  Google Scholar 

  • Hanelt D, Tüg H, Bischof K, Gross C, Lippert H, Sawall T, Karsten U, Wiencke C (2001) Light regime in an Arctic fjord: a study related to stratospheric ozone depletion as a basis for determination of UV effects on algal growth. Mar Biol 138:649–658

    CAS  Google Scholar 

  • Henley WJ, Dunton KH (1995) A seasonal comparison of carbon, nitrogen, and pigment content in Laminaria solidungula and L. saccharina (Phaeophyta) in the Alaskan Arctic. J Phycol 31:325–331

    Google Scholar 

  • Hommersand MH, Moe RL, Amsler CD, Fredericq S (2011) Notes on the systematics and biogeographical relationships of Antarctic and sub-Antarctic Rhodophyta with descriptions of four new genera and five new species. In: Wiencke C (ed) Biology of Polar Benthic Algae. De Gruyter, Berlin, pp 53–100

    Google Scholar 

  • Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg S-Ã…, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden. Svalbard Polar Res 21:167–208

    Google Scholar 

  • Horn M, Neighbors M (1984) Protein and nitrogen assimilation as a factor in predicting the seasonal macroalgal diet of the monkeyface prickleback. Trans Amer Fish Soc 113:388–396

    Google Scholar 

  • Huang YM, Amsler MO, McClintock JB, Amsler CD, Baker BJ (2007) Patterns of gammarid amphipod abundance and species composition associated with dominant subtidal macroalgae along the western Antarctic Peninsula. Polar Biol 30:1417–1430

    Google Scholar 

  • Iken K (1999) Feeding ecology of the Antarctic herbivorous gastropod Laevilacunaria antarctica Martens. J Exp Mar Biol Ecol 236:133–148

    Google Scholar 

  • Iken K, Amsler CD, Amsler MO, McClintock JB, Baker BJ (2011) Field studies on deterrent properties of phlorotannins in Antarctic brown algae. In: Wiencke C (ed) Biology of Polar Benthic Algae. De Gruyter, Berlin, pp 121–140

    Google Scholar 

  • Irving A, Connell S, Johnston E, Pile A, Gillanders B (2005) The response of encrusting coralline algae to canopy loss: an independent test of predictions on an Antarctic coast. Mar Biol 147:1075–1083

    Google Scholar 

  • Jacob A, Kirst GO, Wiencke C, Lehmann H (1991) Physiological responses of the Antarctic green alga Prasiola crispa ssp. antarctica to salinity stress. J. Plant Physiol 139:57–62

    CAS  Google Scholar 

  • Jacob A, Wiencke C, Lehmann H, Kirst GO (1992) Physiology and ultrastructure of desiccation in the green alga Prasiola crispa from Antarctica. Bot Mar 35:297–303

    Google Scholar 

  • Johnston E, Connell S, Irving A, Pile A, Gillanders B (2007) Antarctic patterns of shallow subtidal habitat and inhabitants in Wilke’s Land. Polar Biol 30:781–788

    Google Scholar 

  • Kain JM (1989) The seasons in the subtidal. Br Phycol J 24:203–215

    Google Scholar 

  • Karsten U, Wiencke C, Kirst GO (1991a) The effect of salinity changes upon physiology of eulittoral green macroalgae from Antarctica and Southern Chile. I. Cell viability, growth, photosynthesis and dark respiration. J. Plant Physiol 138:667–673

    Google Scholar 

  • Karsten U, Wiencke C, Kirst GO (1991b) The effect of salinity changes upon physiology of eulittoral green macroalgae from Antarctica and Southern Chile II. Inorganic ions and organic compounds. J Exp Bot 42:1533–1539

    CAS  Google Scholar 

  • Karsten U, Kück K, Vogt C, Kirst GO (1996) Dimethylsulfoniopropionate production in phototrophic organisms and its physiological function as a cryoprotectant. In: Kiene RP (ed) Biological and environmental chemistry of DMSP and related sulfonium compounds. Plenum, New York, pp 143–153

    Google Scholar 

  • Karsten U, Bischof K, Wiencke C (2001) Photosynthetic performance of Arctic macroalgae after transplantation from deep to shallow waters. Oecologia 127:11–20

    Google Scholar 

  • Karsten U, Wulff A, Roleda MY, Müller R, Steinhoff FS, Fredersdorf J, Wiencke C (2011) Physiological responses of polar benthic algae to ultraviolet radiation. In: Wiencke C (ed) Biology of polar benthic algae. De Gruyter, Berlin, pp 271–298

    Google Scholar 

  • Kirkwood J, Burton H (1988) Macrobenthic assemblages in Ellis Fjord, Vestfold Hills. Antarctica Mar Biol 97:445–457

    Google Scholar 

  • Kirst GO (1990) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 41:21–53

    CAS  Google Scholar 

  • Klöser H, Mercuri G, Laturnus F, Quartino ML, Wiencke C (1994) On the competive balance of macroalgae at Potter Cove (King George Island, South Shetlands). Polar Biol 14:11–16

    Google Scholar 

  • Klöser H, Quartino ML, Wiencke C (1996) Distribution of macroalgae and macroalgal communities in gradients of physical conditions in Potter Cove, King George Island, Antarctica. Hydrobiologia 333:1–17

    Google Scholar 

  • Lamb IM, Zimmerman MH (1977) Benthic marine algae of the Antarctic Peninsula. Antarctic Research Series 5:130–229

    Google Scholar 

  • Lawver LA, Sclater JG, Meinke M (1985) Mesozoic and Cenozoic Reconstructions of the South Atlantic. Tectonophysics 114:233–254

    Google Scholar 

  • Leclerc N, Gattuso JP, Jaubert J (2000) CO2 partial pressure controls the calcification rate of a coral community. Global Change Biol 6:329–334

    Google Scholar 

  • Liebezeit G, von Bodungen B (1987) Biogenic fluxes in the Bransfield Strait: Planktonic versus macroalgal sources. Mar Ecol Prog Ser 36:23–32

    CAS  Google Scholar 

  • Lippert H, Iken K, Rachor E, Wiencke C (2001) Macrofauna associated with macroalgae in the Kongsfjord (Spitsbergen). Polar Biol 24:512–522

    Google Scholar 

  • Lowell RB, Markham JH, Mann KH (1991) Herbivore-like damage induces increased strength and toughness in a seaweed. Proc R Soc London: Biol Sci 243:31–38

    Google Scholar 

  • Lüder UH, Knoetzel J, Wiencke C (2001a) Acclimation of photosynthesis and pigments to seasonally changing light conditions in the endemic Antarctic red macroalga Palmaria decipiens. Polar Biol 24:598–603

    Google Scholar 

  • Lüder UH, Knoetzel J, Wiencke C (2001b) Two forms of phycobilisomes in the Antarctic red macroalga Palmaria decipiens (Palmariales, Florideophyceae). Physiol Plant 112:572–581

    PubMed  Google Scholar 

  • Lüder UH, Knoetzel J, Wiencke C (2002) Acclimation of photosynthesis and pigments during and after six months of darkness in Palmaria decipiens (Rhodophyta)—a study to simulate Antarctic winter sea ice cover. J Phycol 38:904–913

    Google Scholar 

  • Lüning K (1988) Photoperiodic control of sorus formation in the brown alga Laminaria saccharina. Mar Ecol Prog Ser 45:137–144

    Google Scholar 

  • Lüning K (1990) Seaweeds—their environment, biogeography and ecophysiology. Wiley, New York

    Google Scholar 

  • Lüning K (1991) Circannual growth rhythm in a brown alga. Pterygophora californica. Bot Acta 104:157–162

    Google Scholar 

  • Lüning K, Dring MJ (1979) Continuous underwater light measurement near Helgoland (North Sea) and its significance for characteristic light limits in the sublittoral region. Helgol Meeresunters 32:403–424

    Google Scholar 

  • Lüning K, Kadel P (1993) Daylength range for circannual rhythmicity in Pterygophora californica (Alariaceae, Phaeophyta) and synchronisation of seasonal growth by daylength cycles in several other brown algae. Phycologia 32:379–387

    Google Scholar 

  • McClintock JB, Ducklow H, Fraser W (2008) Ecological responses to climate change on the Antarctic Peninsula. Am Sci 96:302–310

    Google Scholar 

  • McClintock JB, Angus RA, McDonald MR, Amsler CD, Catledge SA, Vohra YK (2009) Rapid dissolution of shells of weakly calcified Antarctic benthic macroorganisms indicates high vulnerability to ocean acidification. Antarct Sci 21:449–456

    Google Scholar 

  • Miller KA, Pearse JS (1991) Ecological studies of seaweeds in McMurdo Sound. Antarctica. Am Zool 31:35–48

    Google Scholar 

  • Moe RL, DeLaca TE (1976) Occurrence of macroscopic algae along the Antarctic Peninsula. Antarctic J US 11:20–24

    Google Scholar 

  • Molis M, Wessels H, Hagen W, Karsten U, Wiencke C (2008) Do sulphuric acid and the brown alga Desmarestia viridis support community structure in Arctic kelp patches by altering grazing impact, distribution patterns, and behaviour of sea urchins? Polar Biol 32:71–82

    Google Scholar 

  • Müller R, Laepple T, Bartsch I, Wiencke C (2011) Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. In: Wiencke C (ed) Biology of polar benthic algae. de Gruyter, New York, pp 237–270

    Google Scholar 

  • Neushul M (1965) Diving observation of sub-tidal Antarctic marine vegetation. Bot Mar 8:234–243

    Google Scholar 

  • Norkko A, Thrush SF, Cummings VJ, Funnell GA, Schwarz AM, Andrew NL, Hawes I (2004) Ecological role of Phyllophora antarctica drift accumulations in coastal soft-sediment communities of McMurdo Sound. Antarctica Polar Biol 27:482–494

    Google Scholar 

  • Novaczek I, Lubbers GW, Breeman AM (1990) Thermal ecotypes in amphi-Atlantic algae. I. Algae of Arctic to cold-temperate distribution (Chaetomorpha melagonium, Devaleraea ramentacea and Phycodrys rubens). Helgoländer Meeresunters 44:459–474

    Google Scholar 

  • Pedersen PM (1976) Marine, benthic algae from southernmost Greenland. Meddr Grønland 3:1–80, 7 plates

    Google Scholar 

  • Peters AF (2003) Molecular identification, taxonomy and distribution of brown algal endophytes, with emphasis on species from Antarctica. Proc Int Seaweed Symp 17:293–302

    Google Scholar 

  • Peters AF, Breeman AM (1993) Temperature tolerance and latitudinal range of brown algae from temperate Pacific South America. Mar Biol 115:143–150

    Google Scholar 

  • Peters AF, Schaffelke B (1996) Streblonema (Ectocarpales, Phaeophyceae) infection in the kelp Laminaria saccharina (Laminariales, Phaeophyceae) in the western Baltic. Hydrobiologia 326–327:111–116

    Google Scholar 

  • Peters AF, van Oppen MJH, Wiencke C, Stam WT, Olsen JL (1997) Phylogeny and historical ecology of the Desmarestiaceae (Phaeophyceae) support a Southern Hemisphere origin. J Phycol 33:294–309

    CAS  Google Scholar 

  • Peters KJ, Amsler CD, Amsler MO, McClintock JB, Dunbar RB, Baker BJ (2005) A comparative analysis of the nutritional and elemental composition of macroalgae from the western Antarctic Peninsula. Phycologia 44:453–463

    Google Scholar 

  • Quartino ML, Boraso de Zaixso AL (2008) Summer macroalgal biomass in Potter Cove, South Shetland Islands. Antarctica: its production and flux to the ecosystem. Polar Biol 31:281–294

    Google Scholar 

  • Quartino ML, Klöser H, Schloss IR, Wiencke C (2001) Biomass and associations of benthic marine macroalgae from the inner Potter Cove (King George Island, Antarctica) related to depth and substrate. Polar Biol 24:349–355

    Google Scholar 

  • Rakusa-Suszczewski S, Zielinski K (1993) Macrophytobenthos. In: Rakusa-Suszczewski S (ed) The maritime Antarctic coastal ecosystem of Admiralty Bay. Polish Academy of Sciences, Warsaw, pp 57–60

    Google Scholar 

  • Raymond JA, Fritsen CH (2001) Semipurification and ice recrystallization inhibition activity of ice-active substances associated with Antarctic photosynthetic organisms. Cryobiology 43:63–70

    PubMed  CAS  Google Scholar 

  • Raymond JA, Knight CA (2003) Ice binding, recrystallization inhibition, and cryoprotective properties of ice-active substances associated with Antarctic sea ice diatoms. Cryobiology 46:174–181

    PubMed  CAS  Google Scholar 

  • Reichardt W (1987) Burial of antarctic macroalgal debris in bioturbated deep-sea sediments. Deep-Sea Res 34:1761–1770

    CAS  Google Scholar 

  • Richardson MG (1977) The ecology including physiological aspects of selected Antarctic marine invertebrates associated with inshore macrophytes. PhD Dissertation. Department of Zoology, University of Durham

    Google Scholar 

  • Richter A, Wuttke S, Zacher K (2008) Two years of in situ UV measurements at the Dallmann Laboratory/Jubany Station. Ber Polarforsch Meeresforsch 571:12–19

    Google Scholar 

  • Roleda MY (2009) Photosynthetic response of Arctic kelp zoospores exposed to radiation and thermal stress. Photochem Photobiol Sci 8:1302–1312

    PubMed  CAS  Google Scholar 

  • Roleda MY, Wiencke C, Hanelt D, Bischof K (2007) Sensitivity of the early life stages of macroalgae from the northern hemisphere to ultraviolet radiation. Photochem Photobiol 83:1–12

    Google Scholar 

  • Schaffelke B, Lüning K (1994) A circannual rhythm controls seasonal growth in the kelp Laminaria hyperborea and L. digitata from Helgoland (North Sea). Eur J Phycol 29:49–56

    Google Scholar 

  • Schwarz AM, Hawes I, Andrew N, Norkko A, Cummings V, Thrush S (2003) Macroalgal photosynthesis near the southern global limit for growth; Cape Evans, Ross Sea, Antarctica. Polar Biol 26:789–799

    Google Scholar 

  • Sevak HP (2010) Potential chemical defenses against diatom fouling in macroalgae from the Antarctic Peninsula: insights from bioassay guided fractionation. MS Thesis. Department of Biology, University of Alabama at Birmingham

    Google Scholar 

  • Smith RC, Stammerjohn SE (2001) Variations of surface air temperature and sea-ice extent in the western Antarctic Peninsula region. Ann Glaciol 33:493–500

    Google Scholar 

  • Stammerjohn S E, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability, J Geophys Res 113:C03S90, doi:10.1029/2007JC004269.

  • Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Bischof K, Papucci C, Ørbæk JB, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther JG, Dallmann W (2002) The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166

    Google Scholar 

  • tom Dieck I (1992) North Pacific and North Atlantic digitate Laminaria species (Phaeophyta): hybridisation experiments and temperature responses. Phycologia 31:147–163

    Google Scholar 

  • tom Dieck I (1993) Temperature tolerance and survival in darkness of kelp gametophytes (Laminariales, Phaeophyta): ecological and biogeographical implications. Mar Ecol Prog Ser 100:253–264

    Google Scholar 

  • van den Hoek C (1982a) Phytogeographic distribution groups of benthic marine algae in the North Atlantic Ocean. A review of experimental evidence from life history studies. Helgoländer Meeresunters 35:153–214

    Google Scholar 

  • van den Hoek C (1982b) The distribution of benthic marine algae in relation to the temperature regulation of their life histories. Biol J Linn Soc 18:1–144

    Google Scholar 

  • van Oppen MJH, Olsen JL, Stam W, van den Hoek C, Wiencke C (1993) Arctic-Antarctic disjunctions in the benthic seaweeds Acrosiphonia arcta (Chlorophyta) and Desmarestia viridis/willii (Phaeophyta) are of recent origin. Mar Biol 115:381–386

    Google Scholar 

  • van Oppen MJH, Diekmann OE, Wiencke C, Stam WT, Olsen JL (1994) Tracking dispersal routes: Phylogeography of Arctic-Antarctic disjunct seaweed Acrosiphonia arcta (Chlorophyta). J Phycol 30:67–80

    Google Scholar 

  • Wessels H, Hagen W, Molis M, Wiencke C, Karsten U (2006) Intra- and interspecific differences in palatability of Arctic macroalgae from Kongsfjorden (Spitsbergen) for two benthic sympatric invertebrates. J Exp Mar Biol Ecol 329:20–33

    Google Scholar 

  • Weykam G, Gómez I, Wiencke C, Iken K, Kloser H (1996) Photosynthetic characteristics and C:N ratios of macroalgae from King George Island (Antarctica). J Exp Mar Biol Ecol 204:1–22

    Google Scholar 

  • Weykam G, Thomas DN, Wiencke C (1997) Growth and photosynthesis of the Antarctic red algae Palmaria decipiens (Palmariales) and Iridaea cordata (Gigartinales) during and following extended periods of darkness. Phycologia 36:395–405

    Google Scholar 

  • Wiencke C (1990a) Seasonality of brown macroalgae from Antarctica - a long-term culture study under fluctuating Antarctic daylengths. Polar Biol 10:589–600

    Google Scholar 

  • Wiencke C (1990b) Seasonality of red and green macroalgae from Antarctica - a long-term culture study under fluctuating Antarctic daylengths. Polar Biol 10:601–607

    Google Scholar 

  • Wiencke C, Clayton MN (2002) Antarctic Seaweeds. ARG Gantner Verlag, KG Ruggell

    Google Scholar 

  • Wiencke C, Fischer G (1990) Growth and stable carbon isotope composition of cold-water macroalgae in relation to light and temperature. Mar Ecol Prog Ser 65:283–292

    Google Scholar 

  • Wiencke C, Bartsch I, Bischoff B, Peters AF, Breeman AM (1994) Temperature requirements and biogeography of Antarctic, Arctic and amphiequatorial seaweeds. Bot Mar 37:247–259

    Google Scholar 

  • Wiencke C, Clayton MN, Langreder C (1996) Life history and seasonal morphogenesis of the endemic Antarctic brown alga Desmarestia anceps Montagne. Bot Mar 39:435–444

    Google Scholar 

  • Wiencke C, Vögele B, Kovaltchouk NA, Hop H (2004) Species composition and zonation of marine benthic macroalgae at Hansneset in Kongsfjorden, Svalbard. Ber Polarforsch Meeresforsch 492:55–62

    Google Scholar 

  • Wiencke C, Roleda MY, Gruber A, Clayton MN, Bischof K (2006) Susceptibility of zoospores to UV radiation determines upper depth distribution limit of Arctic kelps: evidence through field experiments. J Ecol 94:455–463

    Google Scholar 

  • Wiencke C, Clayton MN, Gómez I, Iken K, Lüder U, Amsler CD, Karsten U, Hanelt D, Bischof K, Dunton K (2007) Life strategy, ecophysiology and ecology of seaweeds in polar water. Rev Environ Sci Biotech 6:95–126

    Google Scholar 

  • Wiencke C, Gómez I, Dunton K (2011) Phenology and seasonal physiological performance of polar seaweeds. In: Wiencke C (ed) Biology of Polar Benthic Algae. De Gruyter, Berlin, pp 181–194

    Google Scholar 

  • Wilce RT (1990) Role of the Arctic Ocean as a bridge between the Atlantic and Pacific Oceans: fact and hypothesis. In: Garbary DJ, South GR (eds) Evolutionary biogeography of the marine algae of the North Atlantic. Springer, Berlin, pp 323–348

    Google Scholar 

  • Wilce RT (1994) The Arctic subtidal as habitat for macrophytes. In: Lobban CS, Harrison PJ (eds) Seaweed ecology and physiology. Cambridge University Press, Cambridge, pp 89–92

    Google Scholar 

  • Wilce RT, Pedersen PM, Sekida S (2009) Chukchia pedicellata gen. et sp. nov. and C. endophytica nov. comb., Arctic endemic brown algae (Phaeophyceae). J Phycol 45:272–286

    Google Scholar 

  • WÅ‚odarska-Kowalczuk M, KukliÅ„ski P, Ronowicz M, LegeżyÅ„ska J, Gromisz S (2009) Assessing species richness of macrofauna associated with macroalgae in Arctic kelp forests (Hornsund, Svalbard). Polar Biol 32:897–905

    Google Scholar 

  • Wulff A, Iken K, Quartino ML, Al-Handal A, Wiencke C, Clayton MN (2011) Biodiversity, biogeography and zonation of marine benthic micro- and macroalgae in the Arctic and Antarctic. In: Wiencke C (ed) Biology of polar benthic algae. De Gruyter, Berlin, pp 23–52

    Google Scholar 

  • Zacher K, Wulff A, Molis M, Hanelt D, Wiencke C (2007) Ultraviolet radiation and consumer effects on a field-grown intertidal macroalgal assemblage in Antarctica. Global Change Biol 13:1201–1215

    Google Scholar 

  • Zacher K, Rautenberger R, Hanelt D, Wulff A, Wiencke C (2011) The abiotic environment of polar benthic algae. In: Wiencke C (ed) Biology of polar benthic algae. De Gruyter, Berlin, pp 9–22

    Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    PubMed  CAS  Google Scholar 

  • Zamzow JP, Amsler CD, McClintock JB, Baker BJ (2010) Habitat choice and predator avoidance by Antarctic amphipods: the roles of algal chemistry and morphology. Mar Ecol Prog Ser 400:155–163

    Google Scholar 

  • Zamzow JP, Aumack CF, Amsler CD, McClintock JB, Amsler MO, Baker BJ (2011) Gut contents and stable isotope analyses of the Antarctic fish, Notothenia coriiceps Richardson, from two macroalgal communities. Antarctic Sci 23:107–116

    Google Scholar 

  • Zaneveld JS (1966) The occurrence of benthic marine algae under shore fast-ice in the western Ross Sea, Antarctic. Proc Int Seaweed Symp 5:217–231

    Google Scholar 

  • Zielinski K (1981) Benthic macroalgae of Admirality Bay (King George Island, South Shetland Islands) and circulation of algal matter between water and the shore. Pol Polar Res 2:71–94

    Google Scholar 

  • Zielinski K (1990) Bottom macroalgae of the Admiralty Bay (King George Island, South Shetlands, Antarctica). Pol Polar Res 11:95–131

    Google Scholar 

Download references

Acknowledgments

We thank M. Amsler for editorial suggestions. Manuscript preparation was supported in part by US National Science Foundation award ANT-0838773 from the Antarctic Organisms and Ecosystems program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wiencke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiencke, C., Amsler, C.D. (2012). Seaweeds and Their Communities in Polar Regions. In: Wiencke, C., Bischof, K. (eds) Seaweed Biology. Ecological Studies, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28451-9_13

Download citation

Publish with us

Policies and ethics