Skip to main content

Azides

  • Chapter
  • First Online:

Abstract

Azides are substances containing the \( {\hbox{N}}_{{3}}^{ - } \) group. They exist as inorganic salts, organic compounds, organo-metals, or complexes. For the purpose of this book, we have decided to include the inorganic and organic compounds. Some organic substances that contain the azido group are included in other chapters (e.g., tetrazoles, other substances). We have also decided to separate out complex compounds containing the azido group and place them into a separate chapter with other complexes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Basic forms of lead azide are described by various formulas most often as PbO·Pb(N3)2 or Pb(OH)N3.

References

  1. Curtius, T.: Ueber Stickstoffwasserstoffäure. Berichte der deutschen chemischen Gesellschaft 23, 3023–3033 (1890)

    Article  Google Scholar 

  2. Curtius, T., Radenhauser, R.: Zur Kenntniss der Stickstoffwasserstoffsäure. Journal für praktische Chemie 43, 207–208 (1891)

    Article  Google Scholar 

  3. Danilov, J.N., Ilyusin, M.A., Tselinskii I.V.: Promyshlennye vzryvchatye veshchestva; chast I. Iniciiruyushchie vzryvshchatye veshchestva. Sankt-Peterburgskii gosudarstvennyi tekhnologicheskii institut, Sankt-Peterburg (2001)

    Google Scholar 

  4. Bubnov, P.F.: Initsiruyushchie vzryvchatye veshchestva i sredstva initsirovaniya. Gosudarstvennoe izdatelstvo oboronnoi promyshlennosti, Moskva (1940)

    Google Scholar 

  5. Fedoroff, B.T., Sheffield, O.E., Kaye, S.M.: Encyclopedia of Explosives and Related Items. Picatinny Arsenal, New Jersey (1960–1983)

    Google Scholar 

  6. Krauz, C.: Technologie výbušin. Vědecko-technické nakladatelství, Praha (1950)

    Google Scholar 

  7. Evans, B.L., Yoffe, A.D., Gray, P.: Physics and chemistry of the inorganic azides. Chem. Rev. 59, 515–568 (1959)

    Article  CAS  Google Scholar 

  8. Urbański, T.: Chemistry and Technology of Explosives. Pergamon, Oxford (1984)

    Google Scholar 

  9. Hyronimus, F.: Improvements in and relating to the charge of ammunition primers. GB Patent 1,819, 1908

    Google Scholar 

  10. Rintoul, W.: Explosives. Rep. Prog. Appl. Chem. 5, 523–565 (1920)

    Google Scholar 

  11. Audrieth, L.F.: Hydrazoic acid and its inorganic derivates. Chem. Rev. 15, 169–224 (1934)

    Article  CAS  Google Scholar 

  12. Miles, F.D.: The formation and characteristic of crystals of lead azide and of some other initiating explosives. J. Chem. Soc. 2532–2542 (1931)

    Google Scholar 

  13. Hattori, K., McCrone, W.: Lead azide, Pb(N3)2. Anal. Chem. 28, 1791–1792 (1956)

    Article  CAS  Google Scholar 

  14. Stettbacher, A.: Die Ermittlung des absoluten spezifischen Gewichts von Zündund Sprengstoffen. Chemisches Zentralblatt 113, 366–367 (1942)

    Google Scholar 

  15. Fair, H.D., Walker, R.F.E.: Energetic Materials. Physics and Chemistry of Inorganic Azides. Plenum, New York (1977)

    Google Scholar 

  16. Miles, F.D.: The formation and constitution of crystals of lead salts containing water-soluble colloid. Philos. Trans. R. Soc. Lond. A Math. Phys. Sci. 235, 125–164 (1935)

    Google Scholar 

  17. Davis, T.L.: The Chemistry of Powder and Explosives. Wiley, New York (1943)

    Google Scholar 

  18. Taylor, A.C., Thomas, A.T.: Spontaneous explosions during crystal growth of lead azide. J. Cryst. Growth 3, 391–394 (1968)

    Article  Google Scholar 

  19. Taylor, G.W.C.: The preparation of gamma lead azide. In: Proceedings of Symposium on Lead and Copper Azide, pp. A-3, 20-23, Waltham Abbey, 1966

    Google Scholar 

  20. Lamnevik, S., Soderquist, R.: On lead azides. 1 Refinement of the unit cell dimensions of alpha- and beta- lead azide. On a transformation of beta- to alpha- lead azide in the solid state. Report A 1105-F 110. FOA (1963)

    Google Scholar 

  21. Špičák, S., Šimeček, J.: Chemie a technologie třaskavin. Vojenská technická akademie Antonína Zápotockého, Brno (1957)

    Google Scholar 

  22. Jung, P.C.: Initiation and Detonation in Lead Azide and Silver Azide at Sub-millimeter Geometrics. Texas Technical University, Lubbock (2006)

    Google Scholar 

  23. Roth, J.: Initiation of lead azide by high-intensity light. J. Chem. Phys. 41, 1929–1936 (1964)

    Article  CAS  Google Scholar 

  24. Wöhler, L., Krupko, W.: Über die Lichtempfindlichkeit der Azide des Silbers, Quecksilberoxyduls, Bleis und Kupferoxyduls, sowie über basisches Blei- und Cupriazid. Berichte der deutschen chemischen Gesellschaft 46, 2045–2057 (1913)

    Article  Google Scholar 

  25. Todd, G., Eather, R., Heron, T.: The decomposition of lead azide under storage conditions. In: Proceedings of Symposium on Lead and Copper Azide, pp. B-2, 34–44, Waltham Abbey, 1966

    Google Scholar 

  26. McLaren, A.C.: The influence of preheating on the detonation velocity of lead azide. Research 10, 409–410 (1957)

    CAS  Google Scholar 

  27. Gray, P., Waddington, T.C.: Thermochemistry and reactivity of azides. I. Thermochemistry of the inorganic azides. Proc. R. Soc. Lond. A Math. Phys. Sci. A235, 106–119 (1956)

    Google Scholar 

  28. Yoffe, A.D.: Thermal decomposition and explosion of azides. Proc. R. Soc. Lond. A Math. Phys. Sci. A208, 188–199 (1951)

    Google Scholar 

  29. Graybush, R.J., May, F.G., Forsyth, A.C.: Differential thermal analysis of primary explosives. Thermochim. Acta 2, 153–162 (1971)

    Article  CAS  Google Scholar 

  30. Urbański, T.: Chemistry and Technology of Explosives. PWN—Polish Scientific Publisher, Warszawa (1967)

    Google Scholar 

  31. Lamnevik, S.: Lead azide, the ideal detonant? In: Jenkins, J.M., White, J.R. (eds.) Proceedings of the International Conference on Research in Primary Explosives, vol. 2, pp. 9/1–9/17, Waltham Abbey (1975)

    Google Scholar 

  32. Brown, M.E., Swallowe, G.M.: The thermal decomposition of the silver(I) and mercury(II) salts of 5-nitrotetrazole and of mercury(II) fulminate. Thermochim. Acta 49, 333–349 (1981)

    Article  CAS  Google Scholar 

  33. Khmelnitskii, L.I.: Spravochnik po vzryvchatym veshchestvam. Voennaya ordena Lenina i ordena Suvorova Artilleriiskaya inzhenernaya akademiya imeni F. E. Dzerzhinskogo, Moskva (1962)

    Google Scholar 

  34. Urbański, T.: Chemie a technologie výbušin. SNTL, Praha (1959)

    Google Scholar 

  35. Taylor, G.W.C.: Technical requirements and prospects for new primary explosives. In: Jenkins, J.M., White, J.R. (eds.) Proceedings of the International Conference on Research in Primary Explosives, vol. 3, pp. 18/1–18/21, Waltham Abbey (1975)

    Google Scholar 

  36. Blay, N.J., Rapley, R.J.: In: Jenkins, J.M., White, J.R. (eds.) Proceedings of the International Conference on Research in Primary Explosives, vol. 3, pp. 20/1–20/19, Waltham Abbey (1975)

    Google Scholar 

  37. Wyatt, R.H.: Copper azide corrosion. In: Proceedings of Symposium on Lead and Copper Azide, pp. A-2, 15–19, Waltham Abbey, 1966

    Google Scholar 

  38. Wythes, P.E.: Accidents in manufacture of lead azide. In: Proceedings of Symposium on Lead and Copper Azide, pp. D-2, 99–102, Waltham Abbey, 1966

    Google Scholar 

  39. Military Explosives, Report TM-9-1300-214, Headquarters, Department of the Army (1984)

    Google Scholar 

  40. Meyer, R., Köhler, J., Homburg, A.: Explosives. Wiley-VCH, Weinheim (2002)

    Book  Google Scholar 

  41. Šelešovský, J., Matyáš, R., Musil, T.: In: Using probit analysis for sensitivity tests - sensitivity curve and reliability. 14th Seminar on New Trends in Research of Energetic Materials, pp. 964–968, Pardubice, 2011

    Google Scholar 

  42. Matyáš, R., Šelešovský, J., Musil, T.: Sensitivity to friction for primary explosives. J. Hazard. Mater. 213–214, 236–41 (2012)

    Article  Google Scholar 

  43. Clark, A.K., Davies, N., Hubbard, P.J., Lee, P.R.: Cross sensitisation to impact between lead azide and tetryl. In: Jenkins, J.M., White, J.R. (eds.) Proceedings of International Conference on Research in Primary Explosives, vol. 3, pp. 22/1-22/15, Waltham Abbey (1975)

    Google Scholar 

  44. Medlock, L.E., Leslie, J.P.: Some aspects of the preparation and characteristics of lead azide precipitated in the presence of gelatin. In: Jenkins, J.M., White, J.R. (eds.) Proceedings of the International Conference on Research in Primary Explosives, vol. 2, pp. 10/1–10/16, Waltham Abbey (1975)

    Google Scholar 

  45. Tomlinson, W.R., Sheffield, O.E.: Engineering Design Handbook, Explosive Series of Properties Explosives of Military Interest. Report AMCP 706-177 (1971)

    Google Scholar 

  46. Bagal, L.I.: Khimiya i tekhnologiya iniciiruyushchikh vzryvchatykh veshchestv. Masinostroenie, Moskva (1975)

    Google Scholar 

  47. Kast, H., Haid, A.: Über die sprengtechnischen Eigenschaften der wichtigsten Initialsprengstoffe. Zeitschrift für das angewandte Chemie 38, 43–52 (1925)

    Article  Google Scholar 

  48. Wallbaum, R.: Sprengtechnische Eigenschaften und Lagerbeständigke der wichtigsten Initialsprengstoffe. Zeitschrift für das gesamte Schiess- und Sprengstoffwesen 34, 197–201 (1939)

    Google Scholar 

  49. Kabik, I., Urman, S.: Hazards of copper azide fuzes. In: Proceedings of Minutes of the 14th Explosive Safety Seminar, pp. 533–552 (1972)

    Google Scholar 

  50. Blechta, F.: Dnešní stav otázky náhražek třaskavé rtuti. Chemický obzor 3, 330–336 (1928)

    CAS  Google Scholar 

  51. Curtius, T.: Neues vom Stickstoffwasserstoff. Berichte der deutschen chemischen Gesellschaft 24, 3341–3349 (1891)

    Article  Google Scholar 

  52. Hanus, M.: Méně známé třaskaviny. Synthesia a.s., VÚPCH, Pardubice (1996)

    Google Scholar 

  53. Holloway, K.J., Taylor, G.W.C., Thomas, A.T.: Manufacture of dextrinated lead azide. US Patent 3,173,818, 1965

    Google Scholar 

  54. Thomas, A.T.: Spontaneous explosion during crystal growth of lead azide. In: Proceedings of Symposium on Lead and Copper Azide, pp. D-3, 103–111, Waltham Abbey, 1966

    Google Scholar 

  55. Garrett, W.L., Downs, D.S., Gora, T., Fair, H.D., Wiegand, D.A.: Preparation, characterization and electric field initiation of lead azide single crystal. In: Jenkins, J.M.,White, J.R. (eds.) Proceedings of the International Conference on Research in Primary Explosives, vol. 1, pp. 4/1–4/9, Waltham Abbey (1975)

    Google Scholar 

  56. Garrett, W.L.: The growth of large lead azide crystals. Mater. Res. Bull. 7, 949–954 (1972)

    Article  CAS  Google Scholar 

  57. Herz, E.V.: A process for manufacture of detonating compositions for detonators and primers. GB Patent 187,012, 1922

    Google Scholar 

  58. Herz, E.V.: A process for manufacture of detonating compositions for detonators or primers. US Patent 1,498,001, 1924

    Google Scholar 

  59. Spear, R.J., Elischer, P.P.: Studies of stab initiation. Sensitization of lead azide by energetic sensitizers. Aust. J. Chem. 35, 1–13 (1982)

    Article  CAS  Google Scholar 

  60. Friederich, W.: Manufacture of primig compositions. GB Patent 180,605, 1922

    Google Scholar 

  61. Todd, G., Tasker, M.P.: The identity of the gamma modification of basic lead azide type I. Helv. Chim. Acta 54(7), 2210–2212 (1971)

    Article  CAS  Google Scholar 

  62. Sinha, S.K.: Study of basic azides of lead by thermometric titration. In: Hansson, J. (ed.) Proceedings of 3rd Symposium on Chemical Problems Connected with the Stability of Explosives, pp. 16–32. Sektionen for detonik och Forbranning, Ystad (1973)

    Google Scholar 

  63. Sinha, S.K., Srivastava, R.C., Surve, R.N.: Basic azides of lead as safer primary explosives. In: Jenkins, J.M., White, J.R. (eds.) Proceedings of the International Conference on Research in Primary Explosives, vol. 2, pp. 11/1–11/18, Waltham Abbey (1975)

    Google Scholar 

  64. Agrawal, J.P.: High Energy Materials—Propellants, Explosives, Pyrotechnics. Wiley-VCH, Weinheim (2010)

    Book  Google Scholar 

  65. Taylor, C.A., Rinkenbach, W.H.: Silber azide: An initiator of detonation. Army Ordnance 5, 824–825 (1925)

    CAS  Google Scholar 

  66. Piechowicz, T.: Solubilité de l’azoture d’argent dans l’ammoniaque et dans la pyridine. Bulletin de la Societe Chimique de France 5, 1566–1567 (1971)

    Google Scholar 

  67. Taylor, A.C., Nims, L.F.: The standard potential of the silver-silver azide electrode. J. Am. Chem. Soc. 60, 262–264 (1938)

    Article  CAS  Google Scholar 

  68. Dennis, L.M., Isham, H.: Hydronitric acid V. J. Am. Chem. Soc. 29, 18–31 (1907)

    Article  CAS  Google Scholar 

  69. Merwe, L.: The preparation and chemical and physical characterization of silver azide. In: Proceedings of 12th Symposium on Explosives and Pyrotechnics, vol. 12, 1984

    Google Scholar 

  70. Lamnevik, S.: Prevention of copper azide formation in ammunition. In: Proceedings of Symposium on Lead and Copper Azide, pp. C-6, 92–96, Waltham Abbey, 1966

    Google Scholar 

  71. Taylor, G.W.C.: The Manufacture of Silver Azide RD 1336. Report 2/R/50 (Accession No. ADA 474242), Explosives Research and Development Establishment, Waltham Abbey (1950)

    Google Scholar 

  72. Field, J.E.: The mechanisms of initiation and propagation in primary explosives: a review. In: Jenkins, J.M., White, J.R. (eds.) Proceedings of the International Conference on Research in Primary Explosives, vol. 1, pp. 1/1–1/24, Waltham Abbey, Essex (1975)

    Google Scholar 

  73. Taylor, G.W.C., Jenkins, J.M.: Progress toward primary explosives on improved stability. In: Proceedings of 3rd Symposium on Chemical Problems Connected with the Stability of Explosives, pp. 43–46, Ystad, Sweden (1973)

    Google Scholar 

  74. Bates, L.R., Jenkins, J.M.: Search for new detonator. In: Jenkins, J.M., White, J.R. (eds.) Proceedings of the International Conference on Research in Primary Explosives, vol. 2, Waltham Abbey (1975)

    Google Scholar 

  75. Bekk, J.: The photographic behaviour of silver azoimide. J. Chem. Soc. 108, II200–II201 (1915)

    Google Scholar 

  76. Evans, B.L., Yoffe, A.D.: Structure and stability of inorganic azides. II. Some physical and optical properties, and the fast decomposition of solid monovalent inorganic azides. Proc. R. Soc. Lond. A Math. Phys. Sci. A250, 346–366 (1959)

    Google Scholar 

  77. Courtney-Pratt, J.S., Rogers, G.T.: Initiation of explosion by light and by flying fragments. Nature 175, 632–633 (1955)

    Article  CAS  Google Scholar 

  78. Wöhler, L., Krupko, W.: Action of light on silver, mercurous, lead and cuprous azoimides; basic azoimides of lead and copper. J. Chem. Soc. 104II, 703 (1913)

    Google Scholar 

  79. Gray, P.: Chemistry of the inorganic azides. Quart. Rev. 17, 441–473 (1963)

    Article  CAS  Google Scholar 

  80. Hitch, A.R.: Thermal decomposition of certain inorganic trinitrides. J. Am. Chem. Soc. 40, 1195–1204 (1918)

    Article  CAS  Google Scholar 

  81. Millar, R.W.: Lead free initiator materials for small electro explosive devices for medium caliber munitions. Final Report 04 June 2003. Report QinetiQ/FST/CR032702/1.1, QuinetiQ, Farnborough (2003)

    Google Scholar 

  82. Taylor, A.C., Rinkenbach, W.H.: Sensitivities of detonating compounds to frictional impact, impact, and heat. J. Franklin Inst. 204, 369–376 (1927)

    Article  CAS  Google Scholar 

  83. Wöhler, L., Martin, F.: Azides; Sensitiveness of. J. Soc. Chem. Ind. 36, 570–571 (1917)

    Google Scholar 

  84. Roux, J.J.P.A.: The dependence of friction sensitivity of primary explosives upon rubbing surface roughness. Propellants Explosives Pyrotechnics 15, 243–247 (1990)

    Article  Google Scholar 

  85. Evans, B.L., Yoffe, A.D.: The burning and explosion of single crystals. Proc. R. Soc. Lond. A238, 325–333 (1956)

    Google Scholar 

  86. Bowden, F.P., Williams, R.J.E.: Initiation and propagation of explosion in azides and fulminates. Proc. R. Soc. Lond. A Math. Phys. Sci. 1951, A176–A188 (1951)

    Google Scholar 

  87. Yoffe, A.D., Evans, B.L., Deb, S.K.: Foreign cations in silver azide. Nature 180, 294–295 (1957)

    Article  CAS  Google Scholar 

  88. Wöhler, L., Martin, F.: Die Initialwirkung von Aziden und Fulminaten. Zeitschrift für das gesamte Schiess- und Sprengstoffwesen, (1917); 12, 18–21

    Google Scholar 

  89. Darier, G.E., Goudet, C.: Preventing explosions in handling azides and other explosives. US Patent 1,349,411, 1920

    Google Scholar 

  90. Gray, P., Waddington, T.C.: Detonation and decomposition of silver azide sensitized by the cyanamide ion. Chem. Ind. 1255–1257 (1955)

    Google Scholar 

  91. Blechta, F.: Verfahren zur Herstellung von Initialzündsätzen, welche kolloidale Silber- und Quesksilberazide in lockerer, nicht zusammenbackender Form enthalten. AT Patent 126,150, 1932

    Google Scholar 

  92. Blechta, F.: Une nouvelle amorce a l’azothydrure. Chimie et industrie 921–925 (1933)

    Google Scholar 

  93. Taylor, G.W.C.: Improvements in the manufacture of silver azide. GB Patent 781,440, 1957

    Google Scholar 

  94. Williams, E., Peyton, S.V., Harris, R.C.: Improvements in or relating to the manufacture of silver azide. GB Patent 887,141, 1962

    Google Scholar 

  95. McGuchan, R.: Improvements in primary explosive compositions and their manufacture. In: Proceedings of 10th Symposium on Explosives and Pyrotechnics, San Francisco, 1979

    Google Scholar 

  96. Costain, T.S.: Process for producing silver azide. US Patent 3,943,235, 1976

    Google Scholar 

  97. Hirlinger, J.M., Bichay, M.: New Primary Explosives Development for Medium Caliber Stab Detonators. Report SERDP PP-1364, US Army ARDEC, Washington DC (2004)

    Google Scholar 

  98. Hirlnger, J., Fronabarger, J., Williams, M., Armstrong, K., Cramer, R.J.: Lead azide replacement program. In: Proceedings of NDIA, Fuze Conference, 2005

    Google Scholar 

  99. Hodgkinson, W.R.: Improvements in and relating to the production of azides. GB Patent 128,014, 1919

    Google Scholar 

  100. Turrentine, J.W.: Contributions of electrochemistry of hydronitric acid and its salts. I. The corrosion of some metals in sodium trinitride solution. J. Am. Chem. Soc. 33, 803–828 (1911)

    Article  CAS  Google Scholar 

  101. Cirulis, A.: Die explosiven Eigenschaften des Kupferazids Cu(N3)2, Zeitschrift fur das gesamte Schiess- und Sprengstoffwesen (1943); 38, 42–45

    Google Scholar 

  102. Straumanis, M., Cirulis, A.: Das Kupfer(II)-azid. Darstellungsmethoden, Bildung und Eigenschaften. Zeitschrift für anorganische und allgemeine Chemie 251, 315–331 (1943)

    Article  CAS  Google Scholar 

  103. Colton, R.J., Rabalais, J.W.: Electronic structure of some inorganic azides from X-ray electron spectroscopy. J. Chem. Phys. 64, 3481–3486 (1976)

    Article  CAS  Google Scholar 

  104. Wilsdorf, H.: Die Kristallstruktur des einwertigen Kupferazids, CuN3. Acta Crystallogr. 1, 115–118 (1948)

    Article  CAS  Google Scholar 

  105. Duke, J.R.C.: The crystallography of copper azides. In: Proceedings of the Symposium on Lead and Copper Azides, pp. C-5, 87–91, Waltham Abbey, 1966

    Google Scholar 

  106. Harris, R.C.: The formation and detection of copper azides corrosions. In: Proceedings of Symposium on Lead and Copper Azide, pp. C-1, 70–71, Waltham Abbey, 1966

    Google Scholar 

  107. Lamnevik, S.: Copper azide corrosion. In: Proceedings of Symposium on Lead and Copper Azide, pp. C-2, 72–77, Waltham Abbey, 1966

    Google Scholar 

  108. Holloway, K.J.: The preparation, identification and sensitiveness of copper azide. In: Proceedings of Symposium on Lead and Copper Azide, pp. C-3, 78–83, Waltham Abbey, 1966

    Google Scholar 

  109. Turrentine, J.W., Moore, R.L.: The action of hydronitric acid on cuprous chloride and metallic copper. J. Am. Chem. Soc. 34, 382–384 (1912)

    Article  CAS  Google Scholar 

  110. Singh, K.: Sensitivity of cuprous azide towards heat and impact. Trans. Faraday Soc. 55, 124–129 (1959)

    Article  CAS  Google Scholar 

  111. Curtius, T., Rissom, J.: Azoimide. J. Chem. Soc. 76, B92 (1899)

    Google Scholar 

  112. Senise, P., Neves, E.F.A.: Solubility study of copper(II) azide in aqueous sodium azide solutions of low ionic strength. J. Inorg. Nucl. Chem. 33, 351–358 (1971)

    Article  CAS  Google Scholar 

  113. Medlock, L.E.: Corrosion of copper detonator tubes in the presence of lead azide. In: Proceedings of Symposium on Lead and Copper Azide, pp. C-4, 84–86, Waltham Abbey, 1966

    Google Scholar 

  114. Okubo, S., Shindo, K., Oinuma, S.: Copper azide detonators. I. Preparation of copper azide and its impact sensitivity test. CAN 52, 8559 (1958)

    CAS  Google Scholar 

  115. Wöhler, L., Martin, F.: Über neue Fulminate und Azide. Berichte der deutschen chemischen Gesellschaft 50, 586–596 (1917)

    Article  Google Scholar 

  116. Nockemann, P., Cremer, U., Ruschewitz, U., Meyer, G.: Mercurous azide, Hg2(N3)2. Zeitschrift für anorganische und allgemeine Chemie 629, 2079–2082 (2003)

    Article  CAS  Google Scholar 

  117. Belomestnykh, V.N.: Uprugie cvoistva neorganicheskikh azidov pri ctandartnykh usloviyakh. Neorganicheskie materialy 29, 210–215 (1993)

    Google Scholar 

  118. Birckenbach, L.: Cadmium azide (at the same time a warning). Zeitschrift für anorganische und allgemeine Chemie 214, 94–96 (1933)

    Article  CAS  Google Scholar 

  119. Wöhler, L., Martin, F.: Sensitiveness of azides. Angew. Chem. 30(I), 33–39 (1917)

    Google Scholar 

  120. Rathsburg, H.: Über die Bestimmung der Reibungsempfindlichkeit von Zünstoffen. Zeitschrift für das angewandte Chemie 41, 1284–1286 (1928)

    Article  CAS  Google Scholar 

  121. Curtius, T., Rissom, J.: Neue Untersuchungen über den Stickstoffwasserstoff N3H. J. für praktische Chemie 58, 261–309 (1898)

    Article  CAS  Google Scholar 

  122. Klapötke, T.M., Geissler, P.: Preparation and characterization of the first binary arsenic azide species: As(N3)3 and [As(N3)4][AsF6]. J. Chem. Soc. Dalton Trans. 3365–3366 (1995)

    Google Scholar 

  123. Klapötke, T.M., Schulz, A., McNamara, J.: Preparation, characterization and ab initio computation of the first binary antimony azide, Sb(N3)3. J. Chem. Soc. Dalton Trans. 2985–2987 (1996)

    Google Scholar 

  124. Haiges, R., Vij, A., Boatz, J.A., Schneider, S., Schroer, T., Gerken, M., Christe, K.O.: First structural characterization of binary AsIII and SbIII azides. Chemistry 10, 508–517 (2004)

    Article  CAS  Google Scholar 

  125. Villinger, A., Schulz, A.: Binary bismuth(III) azides: Bi(N3)3, [Bi(N3)4]-, and [Bi(N3)6]3-. Angew. Chem. Int. Ed. 49, 8017–8020 (2010)

    Article  CAS  Google Scholar 

  126. Haiges, R., Boatz, J.A., Vij, A., Vij, V., Gerken, M., Schneider, S., Schroer, T., Yousufuddin, M., Christe, K.O.: Polyazide chemistry: Preparation and characterization of As(N3)5, Sb(N3)5, and [P(C6H5)4][Sb(N3)6]. Angew. Chem. 116, 6844–6848 (2004)

    Article  Google Scholar 

  127. Boyer, J.H., Canter, F.C.: Alkyl and aryl azides. Chem. Rev. 54, 1–57 (1954)

    Article  CAS  Google Scholar 

  128. Finger, H.: Über Abkömmlinge des Cyanurs. J. für praktische Chemie 75, 103–104 (1907)

    Article  CAS  Google Scholar 

  129. Taylor, C.A., Rinkenbach, W.H.: Preparation and detonating properties of cyanuric triazide. J. Franklin Inst. 196, 551 (1923)

    Google Scholar 

  130. Hart, C.V.: Carbonic acid azides. J. Am. Chem. Soc. 50, 1922–1930 (1928)

    Article  CAS  Google Scholar 

  131. Ott, E., Ohse, E.: Zur Kenntnis einfacher Cyan- und Cyanurverbindungen. II. Über das Cyanurtriazid, (C3N12). Berichte der deutschen chemischen Gesellschaft 54, 179–186 (1921)

    Article  Google Scholar 

  132. Ott, E.: Explosive and process of making same. US Patent 1,390,378, 1921

    Google Scholar 

  133. Ott, E.: Verfahren zur Herstellung von Initialzündmitteln und von Treib- und Sprengmitteln. DE Patent 350,564, 1922

    Google Scholar 

  134. Hughes, E.W.: The crystal structure of cyanuric triazide. J. Chem. Phys. 3, 1–5 (1935)

    Article  CAS  Google Scholar 

  135. Sutton, T.C.: Structure of cyanuric triazide (C3N3)(N3)3. Philos. Mag. 15, 1001–1018 (1933)

    CAS  Google Scholar 

  136. Ficheroulle, H., Kovache, A.: Contribution à l`étude des explosifs d’amorçage. Memorial des poudres 41, 1–22 (1959)

    Google Scholar 

  137. Imray, O.: Manufacture of a new explosive. GB Patent 170,359, 1921

    Google Scholar 

  138. Gillan, E.G.: Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor. Chem. Mater. 12, 3906–3912 (2000)

    Article  CAS  Google Scholar 

  139. Muraour, H.: Sur la théorie des réactions explosives. Cas particulier des explosifs d’amorçage. Mémories présentés a la Société chimique 51, 1152–1166 (1932)

    CAS  Google Scholar 

  140. Mehta, N., Cheng, G., Cordaro, E., Naik, N., Lateer, B., Hu, C., Stec, D., Yang, K.: Performance testing of lead-free stab detonator. In: Proceedings of NDIA Fuze Conference, 2006

    Google Scholar 

  141. Pepekin, V.I.: Limiting detonation velocities and limiting propelling powers of organic explosives. Dokl. Phys. Chem. 414(2), 159–161 (2007)

    Article  CAS  Google Scholar 

  142. Kroke, E., Schwarz, M., Buschmann, V., Miehe, G., Fuess, H., Riedel, R.: Nanotubes formed by detonation of C/N precursors. Adv. Mater. 11, 158–161 (1999)

    Article  CAS  Google Scholar 

  143. Utschig, T., Schwarz, M., Miehe, G., Kroke, E.: Synthesis of carbon nanotubes by detonation of 2,4,6-triazido-1,3,5-triazine in the presence of transition metals. Carbon 42, 823–828 (2004)

    Article  CAS  Google Scholar 

  144. Fogelzang, A.E., Egorshev, V.Y., Pimenov, A.Y., Sinditskii, V.P., Saklantii, A.R., Svetlov, B.S.: Issledovanie statsionarnogo goreniya initsiiruyushchikh vzryvchatykh veshchestv pri vysokykh davleniyakh. Dokl. Akad. Nauk SSSR 282, 1449–1452 (1985)

    CAS  Google Scholar 

  145. Huynh, M.V., Coburn, M.D., Meyer, T.J., Wetzer, M.: Green primaries: Environmentally friendly energetic complexes. Proc. Natl. Acad. Sci. 103, 5409–5412 (2006)

    Article  CAS  Google Scholar 

  146. Huynh, M.V., Coburn, M.D., Meyer, T.J., Wetzer, M.: Green primary explosives: 5-nitrotetrazolato-N 2-ferrate hierarchies. Proc. Natl. Acad. Sci. 103, 10322–10327 (2006)

    Article  CAS  Google Scholar 

  147. Huynh, M.H.V., Hiskey, M.A., Hartline, E.L., Montoya, D.P., Gilardi, R.: Polyazido high-nitrogen compounds: hydrazo- and azo-1,3,5-triazine. Angew. Chem. Int. Ed. 43, 4924–4928 (2004)

    Article  CAS  Google Scholar 

  148. Huynh, M.H.V., Hiskey, M.A., Pollarod, C.J., Montoya, D.P., Hartline, E.L., Gilardi, R.: 4,4′,6,6′-Tetrasubstituted hydrazo- and azo-1,3,5-triazines. J. Energetic Mater. 22, 217–229 (2004)

    Article  CAS  Google Scholar 

  149. Huynh, M.H.V., Hiskey, M.A., Archuleta, J.G., Roemer, E.L.: Preparation of nitrogen-rich nanolayered, nanoclustered, and nanodendritic carbon nitrides. Angew. Chem. Int. Ed. 44, 737–739 (2005)

    Article  CAS  Google Scholar 

  150. Huynh, M.H.V., Hiskey, M.A.: Preparation of high nitrogen compound and materials therefrom. US Patent 2006/0211565, 2006

    Google Scholar 

  151. Loew, P., Weis, C.D.: Azo-1,3,5-triazines. J. Heterocyc. Chem. 13, 829–833 (1976)

    Article  CAS  Google Scholar 

  152. Li, X.T., Li, S.H., Pang, S.P., Yu, Y.Z., Luo, Y.J.: A new efficient route for the synthesis of 4,4′,6,6′-tetra(azido)azo-1,3,5-triazine. Chin. Chem. Lett. 18, 1037–1039 (2007)

    Article  CAS  Google Scholar 

  153. Turek, O.: Le 2,4,6-trinitro-1,3,5-triazido-benzene, nouvel explosif d’amorçage. Chimie et industrie 26, 781–794 (1931)

    CAS  Google Scholar 

  154. Turek, O.: 1,3,5-Triazido-2,4,6-trinitrobenzen, nová iniciálná výbušina. Chemický obzor 7, 76–79; 97–104 (1932)

    Google Scholar 

  155. Adam, D., Karaghiosoff, K., Klapotke, T.M., Hioll, G., Kaiser, M.: Triazidotrinitro benzene: 1,3,5-(N3)3-2,4,6-(NO2)3C6. Propellants Explosives Pyrotechnics 27, 7–11 (2002)

    Article  CAS  Google Scholar 

  156. Ficheroulle, H., Kovache, A.: Contribution à l`étude des explosifs d’amorçage. Mémorial des poudres 31, 1–27 (1949)

    Google Scholar 

  157. Zielinski, B.: Ignition mixture for percussion caps of all kind, small munitions, and primers. US Patent 2,111,719, 1938

    Google Scholar 

  158. Turek, O.: Blasting cartridge, percussion cap, detonator, detonating fuse, and the like. US Patent 1,743,739, 1930

    Google Scholar 

  159. Turek, O.: A method of producing 2,4,6-trinitro-1,3,5-triazidobenzene. GB Patent 298,981, 1928

    Google Scholar 

  160. Turek, O.: Verfahren zur Herstellung von 1,3,5-Trinitro-2,4,6-triazidobenzol. DE Patent 498,050, 1930

    Google Scholar 

  161. Turek, O.: Improvements in and connected with explosive charges for detonators, percussion caps, boosters, detonating fuses, projectiles and the like. GB Patent 298,629, 1927

    Google Scholar 

  162. Turek, O.: Verfahren zur Herstellung von Sprengladungen für Sprengkapseln, Zündkapseln, Detonationszündschnüre u. dgl. DE Patent 494,289, 1928

    Google Scholar 

  163. Improvements in ignition mixtures for percussion caps of all kind, small munitions and primers. GB Patent 465,768, 1936

    Google Scholar 

  164. Fries, K., Ochwat, P.: Neues über Dichlor-2.3-naphthochinon-1.4. Berichte der deutschen chemischen Gesellschaft 56, 1291–1304 (1923)

    Article  Google Scholar 

  165. Šorm, F.: O tetrazidobenzchinonu (1,4). Chemický obzor 14, 37–39 (1939)

    Google Scholar 

  166. Gilligan, W.H., Kamlet, M.J.: On the explosive properties of tetraazido-p-benzoquinones. Tetrahedron Lett. 19, 1675–1676 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matyáš, R., Pachman, J. (2013). Azides. In: Primary Explosives. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28436-6_4

Download citation

Publish with us

Policies and ethics