Skip to main content

Explosive Properties of Primary Explosives

  • Chapter
  • First Online:
Book cover Primary Explosives

Abstract

The main requirements for primary explosives are sensitivity within useful limits, high initiating efficiency, reasonable fluidity, resistance to dead-pressing, and long-term stability. Useful limits mean that the substance must be sensitive enough to be initiated by an SII but not too sensitive as to be unsafe for handling or transportation. The initiating efficiency, perhaps the most important parameter, determines the ability of a primary explosive to initiate secondary explosives. The reasonable free flowing properties are important for manufacturing where the primary explosives are often loaded volumetrically. Primary explosives must not undergo desensitization when pressed thereby yielding a dead-pressed product. The long-term stability and compatibility with other components, even at elevated temperatures, are essential because primary explosives are often embedded inside more complex ammunition and are not expected to be replaced during their service life. They must also be insensitive to moisture and atmospheric carbon dioxide. Parameters important for secondary explosives such as brisance, strength, detonation velocity, or pressure are of lesser importance to primary explosives although they are of course related to the above properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Urbański, T.: Chemie a technologie výbušin. SNTL, Praha (1959)

    Google Scholar 

  2. Krauz, C.: Technologie výbušin. Vědecko-technické nakladatelství, Praha (1950)

    Google Scholar 

  3. Patry, M.: Combustion et detonation, Paris 1933 In: Urbański, T. Chemistry and Technology of Explosives, vol. 3. PWN - Polish Scientific Publisher, Warszawa (1967)

    Google Scholar 

  4. Tomlinson, W.R., Sheffield, O.E.: Engineering Design handbook, Explosive Series, Properties of Explosives of Military Interest, Report AMCP 706-177. U.S. Army Material Command, Washington, DC (1971)

    Google Scholar 

  5. Muraour, H.: Sur la théorie des réactions explosives. Cas particulier des explosifs d`amourçage. Bull. Soc. Chim. Fr. 51, 1152–1166 (1932)

    CAS  Google Scholar 

  6. Kast, H., Haid, A.: Über die sprengtechnischen Eigenschaften der wichtigsten Initialsprengstoffe. Zeitschrift für das angewandte Chemie 38, 43–52 (1925)

    Article  Google Scholar 

  7. Jahresbericht VIII der chemisch-technischen Reichsanstalt. 8, 122 In: Urbański, T. Chemistry and Technology of Explosives, vol. 3. PWN - Polish Scientific Publisher, Warszawa (1967)

    Google Scholar 

  8. Cook, M.A.: An equation of state for gases at extremely high pressures and temperatures from the hydrodynamic theory of detonation. J. Chem. Phys. 15, 518–524 (1947)

    Article  CAS  Google Scholar 

  9. Strnad, J.: Iniciační vlastnosti nejpoužívanějších třaskavin a vývoj nových metodik jejich měření. Dissertation thesis, Vysoká škola chemicko-technologická, Pardubice (1972)

    Google Scholar 

  10. Kling, A., Florentin, D.: Action des basses températures sur les explosifs. Memorial des poudres 17, 145–153 (1913)

    Google Scholar 

  11. Carl, L.R.: The rate of detonation of mercury fulminate and its mixtures with potassium chlorate. Army Ordnance 6, 302–304 (1926)

    CAS  Google Scholar 

  12. Danilov, J.N., Ilyushin, M.A., Tselinskii, I.V.: Promyshlennye vzryvchatye veshchestva; chast I. Iniciiruyushchie vzryvshchatye veshchestva. Sankt-Peterburgskii gosudarstvennyi tekhnologicheskii institut, Sankt-Peterburg (2001)

    Google Scholar 

  13. Stadler, R.: Analytische und sprengstofftechnische Untersuchungen an Azetylensilber. Zeitschrift für das gesamte Schiess- und Sprengstoffwesen 33, 302–305 (1938)

    Google Scholar 

  14. Bowden, F.P., McLaren, A.C.: Conditions of explosion of azides: effect of size on detonation velocity. Nature 175, 631–632 (1955)

    Article  CAS  Google Scholar 

  15. Friederich, W.: Überhöhte Detonationsgeschwindigkeiten. Zeitschrift für das gesamte Schiess- und Sprengstoffwesen 31, 253 (1936)

    Google Scholar 

  16. Baum, F.A., Stanjukovich, J.K., Sechter, B.I.: In: Fyzika vzryva, p. 290. Nauka, Moskva (1959)

    Google Scholar 

  17. Wöhler, L., Martin, F.: Die Initialwirkung von Aziden und Fulminaten. Zeitschrift für das Gesamte Schiess- und Sprengstoffwesen 30, 18–21 (1917)

    Google Scholar 

  18. Clark, L.V.: Diazodinitrophenol, a detonating explosive. J. Ind. Eng. Chem. 25, 663–669 (1933)

    Article  CAS  Google Scholar 

  19. Taylor, C.A., Rinkenbach, W.H.: H.M.T.D. - a new detonating explosive. Army Ordnance 5, 463–466 (1924)

    Google Scholar 

  20. Taylor, C.A., Rinkenbach, W.H.: Silver azide: an initiator of detonation. Army Ordnance 5, 824–825 (1925)

    CAS  Google Scholar 

  21. Bagal, L.I.: Khimiya i tekhnologiya iniciiruyushchikh vzryvchatykh veshchestv. Mashinostroenie, Moskva (1975)

    Google Scholar 

  22. Taylor, C.A., Buxton, E.P.: Silver fulminate, an initiator of detonation. Army Ordnance 6, 118–119 (1925)

    Google Scholar 

  23. Wallbaum, R.: Sprengtechnische Eigenschaften und Lagerbeständigkeit der wichtigsten Initialsprengstoffe. Zeitschrift für das Gesamte Schiess- und Sprengstoffwesen 34, 197–201 (1939)

    Google Scholar 

  24. Strnad, J.: Primary explosives and pyrotechnics - lecture notes. Katedra teorie a technologie výbušin, Univerzita Pardubice (1999)

    Google Scholar 

  25. Grant, R.L., Tiffany, J.E.: Factors affecting initiating efficiency of detonators. J. Ind. Eng. Chem. 37, 661–666 (1945)

    Article  CAS  Google Scholar 

  26. Zukas, J.A., Walters, W.P.: Explosive Effects and Applications. Springer, New York (1998)

    Book  Google Scholar 

  27. Šelešovský, J., Pachman, J.: Probit analysis in evaluation of explosive’s sensitivity. Cent. Eur. J. Energ. Mater. 7, 269–277 (2010)

    Google Scholar 

  28. Krupka, M.: Testing of Energetic Materials. Univerzita Pardubice, Pardubice (2003)

    Google Scholar 

  29. Sućeska, M.: Test Methods for Explosives. Springer, New York, NY (1995)

    Book  Google Scholar 

  30. Taylor, A.C., Rinkenbach, W.H.: Sensitivities of detonating compounds to frictional impact, impact, and heat. J. Franklin Inst. 204, 369–376 (1927)

    Article  CAS  Google Scholar 

  31. Wallbaum, R.: Sprengtechnische Eigenschaften und Lagerbeständigkeit der wichtigsten Initialsprengstoffe. Zeitschrift für das gesamte Schiess- und Sprengstoffwesen 34, 161–163 (1939)

    Google Scholar 

  32. Berthman, A.: Die Werkstoffrage bei der Herstellung der Explosivstoffe und Zündstoffe. Chemische Apparatur 27, 243–245 (1940)

    Google Scholar 

  33. Fedoroff, B.T., Sheffield, O.E., Kaye, S.M.: Encyclopedia of Explosives and Related Items. Picatinny Arsenal, Dover, NJ (1960–1983)

    Google Scholar 

  34. Phillips, A.J.: Technical report no 1202, Report. Picatinny Arsenal, Dover, NJ (1942)

    Google Scholar 

  35. Khmelnitskii, L.I.: Spravochnik po vzryvchatym veshchestvam. Voennaya ordena Lenina i ordena Suvorova Artilleriiskaya inzhenernaya akademiya imeni F. E. Dzerzhinskogo, Moskva (1962)

    Google Scholar 

  36. Meyer, R., Köhler, J., Homburg, A.: Explosives. Wiley-VCH, Weinheim (2002)

    Book  Google Scholar 

  37. Matyáš, R.:Výzkum vlastností vybraných organických peroxidů. Dissertation, Univerzita Pardubice, Pardubice, Česká Republika (2005)

    Google Scholar 

  38. Mavrodi, G.E.: Improvements in or relating to explosives of the organic peroxide class. GB Patent 620,498, 1949

    Google Scholar 

  39. Šelešovský, J.: Hodnocení stability a životnosti vojenských výbušin. Diploma thesis, Univerzita Pardubice, Pardubice, Česká Republika (2002)

    Google Scholar 

  40. Metz, L.: Die Prüfung von Zündhütchen (Initialsprengstoffen) aus Schlagempfindlichkeit und Flammenwirkung. Zeitschrift für das gesamte Schiess- und Sprengstoffwesen 23, 305–308 (1928)

    Google Scholar 

  41. Rinkenbach, W.H., Burton, O.E.: Explosive characteristics of tetracene. Army Ordnance 12, 120–123 (1931)

    CAS  Google Scholar 

  42. Matyáš, R.: Influence of oil on sensitivity and thermal stability of triacetone triperoxide and hexamethylenetriperoxide diamine. In: Proceedings of 8th Seminar on New Trends in Research of Energetic Materials, pp. 674–679, Pardubice, Czech Republic (2005)

    Google Scholar 

  43. Marshall, A.: Explosives. Butler and Tanner, London (1917)

    Google Scholar 

  44. Ek, S., Menning D.: Purification and sensitivity of triacetone triperoxide (TATP). In: Proceedings of 10th Seminar on New Trends in Research of Energetic Materials, pp. 570–574. Pardubice, Czech Republic (2007)

    Google Scholar 

  45. Špičák, S., Šimeček, J.: Chemie a technologie třaskavin. Vojenská technická akademie Antonína Zápotockého, Brno (1957)

    Google Scholar 

  46. Orlova, E.Y.: Khimiya i tekhnologiya brizantnykh vzryvchatykh vescestv. Khimiya, Leningrad (1981)

    Google Scholar 

  47. Hiskey, M.A., Huynh, M.V.: Primary explosives, US Patent 2006/0030715A1, 2006

    Google Scholar 

  48. Yeager, K.: Trace Chemical Sensing of Explosives. Wiley, Hoboken, NJ (2007)

    Google Scholar 

  49. Avrami, A., Hutchinson, R.: Sensitivity to Impact and Friction In: Fair, H.D., Walker, R.F. (eds.) Energetic materials 2.- Technology of the Inorganic Azides, vol. 2, pp. 111–162. Plenum, New York, NY (1977)

    Google Scholar 

  50. Davis, T.L.: The Chemistry of Powder and Explosives. Wiley, New York, NY (1943)

    Google Scholar 

  51. Bowden, F.P., Singh, K.: Size effects in the initiation and growth of explosion. Nature 172, 378–380 (1953)

    Article  CAS  Google Scholar 

  52. Singh, K.: Sensitivity of cuprous azide towards heat and impact. Trans. Faraday Soc. 55, 124–129 (1959)

    Article  CAS  Google Scholar 

  53. Wöhler, L., Martin, F.: Azides; sensitiveness of. J. Soc. Chem. Ind. 36, 570–571 (1917)

    Google Scholar 

  54. Matyáš, R., Šelešovský, J., Musil, T.: Sensitivity to friction for primary explosives. J. Hazard. Mater. 213–214, 236–241 (2012)

    Article  Google Scholar 

  55. Roux, J.J.P.A.: The dependence of friction sensitivity of primary explosives upon rubbing surface roughness. Propell. Explos. Pyrotech. 15, 243–247 (1990)

    Article  Google Scholar 

  56. Millar, R.W.: Lead free initiator materials for small electro explosive devices for medium caliber munitions: Final report 04 June 2003, report QinetiQ/FST/CR032702/1.1, QuinetiQ, Farnborough, UK, 2003

    Google Scholar 

  57. Military explosives. Report TM-9-1300-214, Headquarters, Department of the Army, 1984

    Google Scholar 

  58. Šelešovský, J., Matyáš, R., Musil T.: Using of the probit analysis for sensitivity tests - sensitivity curve and reliability. In: Proceediongs of 14th Seminar on New Trends in Research of Energetic Materials, pp. 964–968. Univerzita Pardubice, Pardubice, Czech Republic (2011)

    Google Scholar 

  59. Strnad, J., Majzlík, J.: Technical Description of Apparatus ESZ KTTV, Report. Institute of energetic materials, University of Pardubice, Pardubice (2001)

    Google Scholar 

  60. Talawar, M.B., Agrawal, A.P., Anniyappan, M., Wani, D.S., Bansode, M.K., Gore, G.M.: Primary explosives: Electrostatic discharge initiation, additive effect and its relation to thermal and explosive characteristics. J. Hazard. Mater. 137, 1074–1078 (2006)

    CAS  Google Scholar 

  61. Strnad, J., Majzlík, J.: Determination of electrostatic spark sensitivity of energetic materials. In: Proceedings of 4th Seminar on New Trends in Research of Energetic Materials, pp. 303–307. University of Pardubice, Pardubice, Czech Republic (2001)

    Google Scholar 

  62. Strnad, J., Majzlík, J.: Sample of energetic material as a consumer of electric impulse power during the electrostatic discharge examination. In: Proceedings of 37th International Annual Conference of ICT, pp. 58.1–58.11. Karlsruhe (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matyáš, R., Pachman, J. (2013). Explosive Properties of Primary Explosives. In: Primary Explosives. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28436-6_2

Download citation

Publish with us

Policies and ethics