Skip to main content

Organic Peroxides

  • Chapter
  • First Online:

Abstract

The reaction of acetone with hydrogen peroxide gives various types of organic peroxides of acetone, in a reaction involving several stages. The simple linear hydroperoxides and hydroxyperoxides form at first and then condense to the linear dimer and trimer analogs. The linear dihydroperoxide 2,2-dihydroperoxypropane (I) and its dimer bis(2-hydroperoxypropane)peroxide (II) form as a main product in an acetone and hydrogen peroxide mixture, in the absence of an acidic catalyst [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Milas, N.A., Golubovič, A.: Studies in organic peroxides. XXVI. Organic peroxides derived from acetone and hydrogen peroxide. J. Am. Chem. Soc. 81, 6461–6462 (1959)

    Article  CAS  Google Scholar 

  2. McCullough, K.J., Morgan, A.R., Nonhebel, D.C., Pauson, P.L., White, G.J.: Ketone-derivated peroxides. Part I. Synthetic methods. J. Chem. Res. (S), 34 (1980)

    Google Scholar 

  3. Pacheco-Londoño, L., Peña, Á.J., Primera, O.M., Hernández-Rivera, S.P., Mina, N., García, R., Chamberlain, R.T., Lareau, R.: An experimental and theoretical study of the synthesis and vibrational spectroscopy of triacetone triperoxide (TATP). Proc. SPIE 5403, 279–287 (2004)

    Google Scholar 

  4. Rieche, A.: Über Peroxyde der Äther, der Carbonyl-Verbindungen und die Ozonide. Angew. Chem. 70, 251–266 (1958)

    Article  CAS  Google Scholar 

  5. Sauer, M.C.V., Edwards, J.O.: The reactions of acetone and hydrogen peroxide. II. Higher adducts. J. Phys. Chem. 76, 1283–1288 (1972)

    Article  CAS  Google Scholar 

  6. Jensen, L., Mortensen, P.M., Trane, R., Harris, P., Berg, R.W.: Reaction kinetics of acetone peroxide formation and structure investigations using Raman spectroscopy and X-ray diffraction. Appl. Spectrosc. 63, 92–97 (2009)

    Article  CAS  Google Scholar 

  7. Schulz, M., Kirschke, K.: Advances in Heterocyclic Chemistry. Cyclic Peroxides. Academic Press, London (1967)

    Google Scholar 

  8. Matyáš, R., Pachman, J.: Study of TATP: Influence of reaction conditions on product composition. Propellants Explosives Pyrotechnics 35, 31–37 (2010)

    Google Scholar 

  9. Sigman, M.E., Clark, C.D., Caiano, T., Mullen, R.: Analysis of triacetone triperoxide (TATP) and TATP synthetic intermediates by electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 22, 84–90 (2008)

    Article  CAS  Google Scholar 

  10. Sigman, M.E., Clark, C.D., Painter, K., Milton, C., Simatos, E., Frisch, J.L., McCormick, M., Bitter, J.L.: Analysis of oligomeric peroxides in synthetic triacetone triperoxide samples by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 23, 349–356 (2009)

    Article  CAS  Google Scholar 

  11. Baeyer, A., Villiger, V.: Einwirkung des Caro`schen Reagens auf Ketone. Berichte der deutschen chemischen Gesellschaft 32, 3625–3633 (1899)

    Article  Google Scholar 

  12. Baeyer, A., Villiger, V.: Ueber die Einwirkung des Caro’schen Reagents auf Ketone. Berichte der deutschen chemischen Gesellschaft 33, 858–864 (1900)

    Article  CAS  Google Scholar 

  13. Dubnikova, F., Kosloff, R., Almog, J., Zeiri, Y., Boese, R., Itzhaky, H., Alt, A., Keinan, E.: Decomposition of triacetone triperoxide is an entropic explosion. J. Am. Chem. Soc. 127, 1146–1159 (2005)

    Article  CAS  Google Scholar 

  14. Gelalcha, F.G., Schulze, B., Lönnecke, P.: 3,3,6,6-Tetramethyl-1,2,4,5-tetroxane: A twinned crystal structure. Acta Crystallogr. C Cryst. Struct. Commun. C60, o180–o182 (2004)

    Google Scholar 

  15. Milas, N.A., Davis, P., Nolan, J.N.: Organic peroxides. XX. Peroxides from the ozonization of olefins in the presence of carbonium ions. J. Am. Chem. Soc. 77, 2536–2541 (1955)

    Article  CAS  Google Scholar 

  16. Murray, R.W., Agarwal, S.K.: Ozonolysis of some tetrasubstitued ethylenes. J. Org. Chem. 50, 4698–4702 (1985)

    Article  CAS  Google Scholar 

  17. Fedoroff, B.T., Sheffield, O.E., Kaye, S.M.: Encyclopedia of Explosives and Related Items. Picatinny Arsenal, New Jersey (1960–1983)

    Google Scholar 

  18. Zhukov, B.P.: Energeticheskie kondesirovannye sistemy. Izdat. Yanus-K, Moskva (2000)

    Google Scholar 

  19. Egorshev, V., Sinditskii, V., Smirnov, S., Glinkovsky, E., Kuzmin, V.: A comparative study on cyclic acetone peroxides. In: 12nd Seminar on New Trends in Research of Energetic Materials, pp. 113–123, Pardubice, Czech Republic, 2009

    Google Scholar 

  20. Oxley, J.C., Smith, J.L., Luo, W., Brady, J.: Determining the vapor pressure of diacetone diperoxide (DADP) and hexamethylene triperoxide diamine (HMTD). Propellants Explosives Pyrotechnics 34, 539–543 (2009)

    Article  CAS  Google Scholar 

  21. Oxley, J.C., Smith, J.L., Jiaorong, H., Wei, L.: Destruction of peroxide explosives. J. Forensic Sci. 54, 1029–1033 (2009)

    Article  CAS  Google Scholar 

  22. Cafferata, L.F.R., Eyler, G.N., Mirifico, M.V.: Kinetics and mechanism of acetone cyclic diperoxide (3,3,6,6-tetramethyl-1,2,4,5-tetraoxane) thermal decomposition in benzene solution. J. Org. Chem. 49, 2107–2111 (1984)

    Article  CAS  Google Scholar 

  23. Matyáš, R., Šelešovský, J., Musil, T.: Sensitivity to friction for primary explosives. J. Hazard. Mater. 213–214, 236–241 (2012)

    Google Scholar 

  24. Matyáš, R.: Investigation of properties of selected organic peroxides. University of Pardubice, Ph.D. Thesis, Pardubice (2005)

    Google Scholar 

  25. Baeyer, A., Villiger, V.: Ueber die Einwirkung des Caro’schen Reagens auf Ketone. Berichte der deutschen chemischen Gesellschaft 33, 124–126 (1900)

    Article  CAS  Google Scholar 

  26. Pastureau, M., Haller, M.A.: Sur un mode de formation d´acétol et d´acide pyruvique par oxydation directe de l´acétone. Comptes rendus de l’Académie des sciences 88, 1591–1593 (1905)

    Google Scholar 

  27. Lockley, J.E., Ebdon, J.R., Rimmer, S., Tabner, B.J.: Cyclic diperoxides as sources of radicals for the initiation of the radical polymerization of methyl methacrylate. Macromol. Rapid Commun. 21, 841–845 (2000)

    Article  CAS  Google Scholar 

  28. Lockley, J.E., Ebdon, J.R., Rimmer, S., Tabner, B.J.: Polymerization of methyl methacrylate initiated by ozonates of tetramethylethene. Polymer 42, 1797–1807 (2001)

    Article  CAS  Google Scholar 

  29. Dilthey, W., Inckel, M., Stephan, H.: Die Oxydation der Ketone mit Perhydrol. Journal für praktische Chemie 154, 219–237 (1940)

    Article  CAS  Google Scholar 

  30. Reany, O., Kapon, M., Botoshansky, M., Keinan, E.: Rich polymorphism in triacetone-triperoxide. Cryst. Growth Des. 9, 3661–3670 (2009)

    Article  CAS  Google Scholar 

  31. Matyáš, R., Pachman, J., Ang, H.G.: Study of TATP: Spontaneous transformation of TATP to DADP. Propellants Explosives Pyrotechnics 34, 484–488 (2009)

    Google Scholar 

  32. Matyáš, R., Pachman, J., Ang, H.G.: Study of TATP: Spontaneous transformation of TATP to DADP. Propellants Explosives Pyrotechnics 33, 89–91 (2008)

    Article  Google Scholar 

  33. Griesbaum, K., Volpp, W., Greinert, R., Greunig, H.-J., Schmid, J., Henke, H.: Ozonolysis of tetrasubstituted ethylenes, cycloolefins, and conjugated dienes on polyethylene. J. Org. Chem. 54, 383–389 (1989)

    Article  CAS  Google Scholar 

  34. Murray, R.W., Kong, W., Rajadhyaksha, S.N.: The ozonolysis of tetramethylethylene. Concentration and temperature effects. J. Org. Chem. 58, 315–321 (1993)

    Article  CAS  Google Scholar 

  35. Criegee, R.: Über den Verlauf der Ozonspaltung. Justus Liebigs Annalen der Chemie 583, 1–36 (1953)

    Article  CAS  Google Scholar 

  36. Murray, R.W., Story, P.R., Kaplan, M.L.: Nuclear magnetic resonance study of conformational isomerization in acetone diperoxide. J. Am. Chem. Soc. 88, 526–529 (1966)

    Article  CAS  Google Scholar 

  37. Thiemann, A.E.: Über Kraftstoffzusätze in Dieselölen. Automobiltechnische Zeitschrift 45, 454–457 (1942)

    CAS  Google Scholar 

  38. Danilov, J.N., Ilyushin, M.A., Tselinskii, I.V.: Promyshlennye vzryvchatye veshchestva; chast I. Iniciiruyushchie vzryvshchatye veshchestva. Sankt-Peterburgskii gosudarstvennyi tekhnologicheskii institut, Sankt-Peterburg (2001)

    Google Scholar 

  39. Wolffenstein, R.: Ueber die Einwirkung Wasserstoffsuperoxyd auf Aceton und Mesityloxyd. Berichte der deutschen chemischen Gesellschaft 28, 2265–2269 (1895)

    Article  CAS  Google Scholar 

  40. Scheibler, H.: Richard Wolffenstein †. Zeitschrift für angewandte Chemie 42, 1149–1151 (1929)

    Article  CAS  Google Scholar 

  41. Yavari, I., Hosseini-Tabatabaei, M.R., Nasiri, F.: Semiempirical SCF MO study of ring inversion in 1,1,4,4,7,7-tetramethylcyclononane and trimeric acetone peroxide. J. Mol. Struct. Theochem 538, 239–244 (2001)

    Article  CAS  Google Scholar 

  42. Duin, A.C.T., Zeiri, Y., Dubnikova, F., Kosloff, R., Goddard, W.A.: Atomistic-scale simulations of the initial chemical events in the thermal initiation of triacetonetriperoxide. J. Am. Chem. Soc. 127, 11053–11062 (2005)

    Article  Google Scholar 

  43. Bellamy, A.J.: Triacetone triperoxide: Its chemical destruction. J. Forensic Sci. 44, 603–608 (1999)

    CAS  Google Scholar 

  44. Keul, H., Griesbaum, K.: Ozonolysis of olefins containing monochloro substituted double bonds. Can. J. Chem. 58, 2049–2054 (1980)

    Article  CAS  Google Scholar 

  45. Rieche, A., Koch, K.: Die Oxydation des Diisopropyläthers. Berichte der deutschen chemischen Gesellschaft 75, 1016–1028 (1942)

    Article  Google Scholar 

  46. Khmelnitskii, L.I.: Spravochnik po vzryvchatym veshchestvam. Voennaya ordena Lenina i ordena Suvorova Artilleriiskaya inzhenernaya akademiya imeni F. E. Dzerzhinskogo, Moskva (1962)

    Google Scholar 

  47. Muraour, H.: Sur la théorie des réactions explosives. Cas particulier des explosifs d’amorçage. Mémories présentés a la Société chimique 51, 1152–1166 (1932)

    CAS  Google Scholar 

  48. Matyáš, R., Šelešovský, J., Musil T.: Study of TATP: Mass loss and friction sensitivity during ageing. Cent. Eur. J. Energ. Mater. 9, 251–260 (2012)

    Google Scholar 

  49. Oxley, J.C., Smith, J.L., Shinde, K., Moran, J.: Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique. Propellants Explosives Pyrotechnics 30, 127–130 (2005)

    Article  CAS  Google Scholar 

  50. Ficheroulle, H., Kovache, A.: Contribution à l`étude des explosifs d’amorçage. Mémorial des poudres 31, 7–27 (1949)

    CAS  Google Scholar 

  51. Bagal, L.I.: Khimiya i tekhnologiya iniciiruyushchikh vzryvchatykh veshchestv. Mashinostroenie, Moskva (1975)

    Google Scholar 

  52. Matyáš, R.: Chemical destruction of triacetone triperoxide and hexamethylenetriperoxidediamine. In: Proceedings of 6th Seminar on New Trends in Research of Energetic Materials, pp. 164–173, Pardubice, Czech Republic, 2003

    Google Scholar 

  53. Armitt, D., Zimmermann, P., Ellis-Steinborner, S.: Gas chromatography/mass spectrometry analysis of triacetone triperoxide (TATP) degradation products. Rapid Commun. Mass Spectrom. 22, 950–958 (2008)

    Article  CAS  Google Scholar 

  54. Pachman, J., Matyáš, R.: Study of TATP: Stability of TATP solutions. Forensic Sci. Int. 207, 212–214 (2011)

    Article  CAS  Google Scholar 

  55. Cotte-Rodriguez, I., Chen, H., Cooks, R.G.: Rapid trace detection of triacetone triperoxide (TATP) by complexation reactions during desorption electrospray ionization. Chem. Commun. 9, 953–955 (2006)

    Article  Google Scholar 

  56. Dubnikova, F., Kosloff, R., Zeiri, Y., Karpas, Z.: Novel approach to the detection of triacetone triperoxide (TATP): Its structure and its complexes with ions. J. Phys. Chem. A 106, 4951–1159 (2002)

    Article  CAS  Google Scholar 

  57. Matyáš, R., Pachman, J.: Thermal stability of triacetone triperoxide. Sci. Technol. Energetic Mater. 68, 111–116 (2007)

    Google Scholar 

  58. Meyer, R., Köhler, J., Homburg, A.: Explosives. Wiley-VCH, Weinheim (2002)

    Book  Google Scholar 

  59. Yinon, J.: Forensic and Environmental Detection of Explosives. Wiley, New York (1999)

    Google Scholar 

  60. Mavrodi, G.E.G.: Improvements in or relating to explosives of the organic peroxide class. GB Patent 620,498, 1949

    Google Scholar 

  61. Šelešovský, J., Matyáš, R., Musil, T.: Using of the probit analysis for sensitivity tests - sensitivity curve and reliability. In: Proceedings of 14th Seminar on New Trends in Research of Energetic Materials, pp. 963–967, Pardubice, Czech Republic, 2011

    Google Scholar 

  62. Yeager, K.: Trace Chemical Sensing of Explosives. Wiley, New Jersey (2007)

    Google Scholar 

  63. Fogelzang, A.E., Egorshev, V.Y., Pimenov, A.Y., Sinditskii, V.P., Saklantii, A.R., Svetlov, B.S.: Issledovanie statsionarnogo goreniya initsiiruyushchikh vzryvchatykh veshchestv pri vysokykh davleniyakh. Dokl. Akad. Nauk SSSR 282, 1449–1452 (1985)

    CAS  Google Scholar 

  64. Kuzmin, V.V., Kozak, G.D., Solovev, M.Y., Tuzkov, Y.B.: Forensic investigation of some peroxides explosives. In: Proceedings of 11th Seminar on New Trends in Research of Energetic Materials, pp. 387–393, Pardubice, Czech Republic, 2008

    Google Scholar 

  65. Kuzmin, V.V., Solovev, M.Y., Tuzkov, Y.B., Kozak, G.D.: Forensic investigation of some peroxides explosives. Cent. Eur. J. Energetic Mater. 5, 77–85 (2008)

    CAS  Google Scholar 

  66. Rohrlich, M., Sauermilch, W.: Sprengtechnische Eigenschaften von Trizykloazetonperoxyd. Zeitschrift für das gesamte Schiess- und Sprengstoffwesen 38, 97–99 (1943)

    CAS  Google Scholar 

  67. Lefebvre, M.H., Falmagne, B., Smedts, B.: Sensitivities and performances of non-regular explosives. In: Proceedings of 7th Seminar on New Trends in Research of Energetic Materials, pp. 164–173, Pardubice, Czech Republic, 2004

    Google Scholar 

  68. Bubnov, P.F.: Initsiruyushchie vzryvchatye veshchestva i sredstva initsirovaniya. Gosudarstvennoe izdatelstvo oboronnoi promyshlennosti, Moskva (1940)

    Google Scholar 

  69. Matyáš, R., Šelešovský, J.: Power of TATP based explosives. J. Hazard. Mater. 165, 95–99 (2009)

    Article  Google Scholar 

  70. Matyáš, R., Trzciński, W., Cudzilo, S., Zeman, S.: Detonation performance of TATP/AN-based explosives. Propellants Explosives Pyrotechnics 33, 296–300 (2008)

    Article  Google Scholar 

  71. Groth, P.: Crystal structure of 3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexa-oxacyclononane (“trimeric acetone peroxide”). Acta Chem. Scand. 23, 1311–1329 (1969)

    Article  CAS  Google Scholar 

  72. Matyáš, R., Jirásko, R., Lyčka, A., Pachman, J.: Study of TATP: Formation of new chloroderivates of triacetone triperoxide. Propellants Explosives Pyrotechnics 219–224, 36 (2011)

    Google Scholar 

  73. Schulte-Ladbeck, R., Kolla, P., Karst, U.: Trace analysis of peroxide-based explosives. Anal. Chem. 75, 731–735 (2003)

    Article  CAS  Google Scholar 

  74. Peña, Á.J., Pacheco-Londoño, L., Figueroa, J., Rivera-Montalvo, L.A., Román-Velazquez, F.R., Hernández-Rivera, S.P.: Characterization and differentiation of high energy cyclic organic peroxides by GC/FT-IR, GC-MS, FT-IR, and Raman microscopy. Proc. SPIE 5778, 347–358 (2005)

    Google Scholar 

  75. Widmer, L., Watson, S., Schlatter, K., Crowson, A.: Development of an LC/MS method for the trace analysis of triacetone triperoxide (TATP). Analyst 127, 1627–1632 (2002)

    Article  CAS  Google Scholar 

  76. Murray, R.W., Jeyaraman, R.: Dioxiranes: Synthesis and reactions of methyldioxiranes. J. Org. Chem. 50, 2847–2853 (1985)

    Article  CAS  Google Scholar 

  77. Kim, T.J., Heo, N.H., Kim, J.-H., Seo, G.: Formation of acetone cyclic triperoxide over titania-incorporated mesoporous materials. React. Kinet. Catal. Lett. 79, 287–293 (2003)

    Article  CAS  Google Scholar 

  78. Belič, I., Suhadolc, T.: Peroxides of diisopropylether. Experientia 25, 473 (1969)

    Article  Google Scholar 

  79. Acree, F., Haller, H.L.: Trimolecular acetone peroxide in isopropyl ether. J. Am. Chem. Soc. 65, 1652 (1943)

    Article  CAS  Google Scholar 

  80. Kharasch, M.S., Gladstone, M.: Ether peroxides. J. Chem. Educ. 16, 498 (1939)

    Article  Google Scholar 

  81. Noponen, A.: Violent explosion. Chem. Eng. News 55, 5 (1977)

    CAS  Google Scholar 

  82. Stirling, C.J.M.: Explosion warning. Chem. Brit. 5, 36 (1969)

    Google Scholar 

  83. Brewer, A.D.: Peroxide/acetone mixture hazard. Chem. Brit. 11, 335 (1975)

    CAS  Google Scholar 

  84. Micetich, R.G.: 6-Aminopenicillanic acid sulphoxide and ampicillin sulphoxide. Chem. Brit. 13, 163 (1977)

    CAS  Google Scholar 

  85. Costantini, M.: Destruction of acetone peroxides. US Patent 5,003,109, 1991

    Google Scholar 

  86. Davies, A.G.: Organic Peroxides. Butterworths & Co., London (1961)

    Google Scholar 

  87. Pyl, G.: Verfahren zur Herstellung von Initialzündmitteln. DE Patent 423,176, 1925

    Google Scholar 

  88. Holtmeier, U., Holtmeier, L.: Sprengzünder. DE Patent DE 10,2009,007,178 A1, 2009

    Google Scholar 

  89. El-Awady, A.A., Prell, L.J.: Exothermic reactions and unstable compounds: a demonstration of fires, flames, and smoke In: 2nd Annual Symposium of Chemistry Demonstrations, Western Illinois University, Macomb, USA, May, 1979

    Google Scholar 

  90. Shakhashiri, B.Z.: Chemical Demonstrations. A Handbook for Teachers of Chemistry. The University of Wiskonsin Press, Madison (1983)

    Google Scholar 

  91. Šarapatka, J.: Analýza udalostí za rok 2002; Bulletin ochranné služby Policie České republiky, Report. Ministry of the Interior of the Czech Republic, Praha (2003)

    Google Scholar 

  92. IntelCenter: London Tube Bus Attack (LTBA) v 1.5, Report: http://www.intelcenter.com/LTBA-PUB-v1-5.pdf (Online 29 Jan 2007)

  93. Michalske, T., Edelstein, N., Sigman, M., Trewhella, J.: Basic Research Needs for Countering Terrorism, Report: http://www.er.doe.gov/bes/reports/files/NCT_rpt_screen.pdf (Online 29 Jan 2007), 2007

  94. Philpott, D.: The London Bombing. Homeland Defence Journal: http://www.homelanddefensejournal.com/pdfs/LondonBombing_SpecialReport.pdf (Online 29 Jan 2007), 2006

  95. Dudek, K., Matyáš, R., Dorazil, T.: DIEPE – Detection and identification of explosive precursors and explosives. In: Proceedings of 14th Seminar on New Trends in Research of Energetic Materials, pp. 595–600, Pardubice, Czech Republic, 2011

    Google Scholar 

  96. Ember, L.R.: Biochemist arrested in London bombing. Chem. Eng. News 83, 11 (2005)

    Google Scholar 

  97. Stambouli, A., El Bouri, A., Bouayoun, T., Bellimam, M.A.: Headspace-GC/MS detection of TATP traces in post-explosion debris. Forensic Sci. Int. 146S, S191–S194 (2004)

    Google Scholar 

  98. Matyáš, R.: Improvizované výbušiny. In: 2nd Mezinárodní pyrotechnický seminář, pp. 100–109, Praha, Czech Republic, 2003

    Google Scholar 

  99. Marshall, M., Oxley, J.C.: Aspects of Explosives Detection. Elsevier, Oxford (2009)

    Google Scholar 

  100. Jiang, H., Chu, G., Gong, H., Qiao, Q.: Tin chloride catalysed oxidation of acetone with hydrogen peroxide to tetrameric acetone peroxide. J. Chem. Res. (S), 288–289 (1999)

    Google Scholar 

  101. Obinokov, V.N., Botsman, L.P., Ishmupatov, L.J., Tolstikov, G.A.: Ozonoliz alkenov i izuchenie reakcii polifunkcionalnykh coedinenii. XVIII. Issledovanije novogo ozonoliticheskogo sinteza karbonovykh kislot. Zhurnal organicheskoi khimii 16, 524–537 (1980)

    Google Scholar 

  102. Legler, L.: Ueber Producte der langsamen Verbrennung des Aethyläthers. Berichte der deutschen chemischen Gesellschaft 18, 3344–3351 (1885)

    Article  Google Scholar 

  103. Taylor, C.A., Rinkenbach, W.H.: H. M. T. D. A new detonating explosive. Army Ordnance 5, 463–466 (1924)

    CAS  Google Scholar 

  104. Schaefer, W.P., Fourkas, J.T., Tiemann, B.G.: Structure of hexamethylene triperoxide diamine. J. Am. Chem. Soc. 107, 2461–2463 (1985)

    Article  CAS  Google Scholar 

  105. Wierzbicki, A., Cioffi, E.: Density functional theory studies of hexamethylene triperoxide diamine. J. Phys. Chem. A 103, 8890–8894 (1999)

    Article  CAS  Google Scholar 

  106. Wierzbicki, A., Salter, E.A., Cioffi, E.A., Stevens, E.D.: Density functional theory and X-ray investigations of P- and M-hexamethylene triperoxide diamine and its dialdehyde derivative. J. Phys. Chem. A 105, 8763–8768 (2001)

    Article  CAS  Google Scholar 

  107. Guo, C., Persons, J., Harbison, G.S.: Helical chirality in hexamethylene triperoxide diamine. Magn. Reson. Chem. 44, 832–837 (2006)

    Article  CAS  Google Scholar 

  108. Ilyushin, M.A., Tselinsky, I.V., Sudarikov, A.M.: Razrabotka komponentov vysokoenergicheskikh kompozitsii. SPB:LGU im. A. S. Pushkina – SPBGTI(TU), Sankt-Peterburg (2006)

    Google Scholar 

  109. Konrad: Die Verwendung von Hexamethylentetramin in der Sprengstoffindustrie. Nitrocellulose 5, 123–124 (1934)

    Google Scholar 

  110. Peña-Quevedo, A.J., Mina-Calmide, N., Rodríguez, N., Nieves, D., Cody, R.B., Hernández-Rivera, S.P.: Synthesis, characterization and differentiation of high energy amine peroxides by MS and vibrational microscopy. Proc. SPIE 6201, 62012E/62011–62012E/62010 (2006)

    Google Scholar 

  111. Peña-Quevedo, A.J., Hernández-Rivera, S.P.: Mass spectrometry analysis of hexamethylene triperoxide diamine by its decomposition products. Proc. SPIE 7303, 730303/730301–730303/730311 (2009)

    Google Scholar 

  112. Sülzle, D., Klaeboe, P.: The infrared, Raman and NMR spectra of hexamethylene triperoxide diamine. Acta Chem. Scand. A 42, 165–170 (1988)

    Article  Google Scholar 

  113. Marotta, D., Alessandrini, M.E.: Ricerche sull’esametilen-tetrammina. - I. Esametilen-tetrammina e perossido di idrogeno. Gazzetta Chimica Italiana 59, 942–946 (1929)

    CAS  Google Scholar 

  114. Szyc-Lewańska, K., Urbański, T.: Chemistry of cyclonite. Nitration of hexamethylene triperoxide diamine. Bulletin de l’Académie polonaise des sciences; Serie des sciences chimiques, geologiques et geographiques 6, 165–167 (1958)

    Google Scholar 

  115. Stettbacher, A.: Porokha i vzryvshchatye veshchestva. ONTI Glavnaya redakciya khimicheskoi literatury, Moskva (1936)

    Google Scholar 

  116. Urbański, T.: Chemistry and Technology of Explosives. PWN—Polish Scientific Publisher, Warszawa (1967)

    Google Scholar 

  117. Fogelzang, A.E., Serushkin, V.V., Sinditskii, V.P.: O spontannom vzryvje geksametilentriperoksiddiamina. Fizika goreniya i vzryva 25, 129–131 (1989)

    CAS  Google Scholar 

  118. Girsewald, C.: Beiträge zur Kenntnis des Wasserstoffperoxyds. Über die Einwirkung des Wasserstoffperoxyds auf Hexamethylentetramin. Berichte der deutschen chemischen Gesellschaft 45, 2571–2576 (1912)

    Article  Google Scholar 

  119. Metz, L.: Die Prüfung von Zündhütchen (Initialsprengstoffen) auf Schlangempfindlichkeit und Flammenwirkung. Zeitschrift für das gesamte Schiess- und Sprengstoffwesen 23, 305–308 (1928)

    Google Scholar 

  120. Girsewald, C.: Verfahren zur Darstellung von Hexamethylentriperoxyddiamin. DE Patent 263,459, 1912

    Google Scholar 

  121. Pease, J., Newell, F.: Process of producing a new organic compound and the compound when produced thereby. GB Patent 339,024, 1929

    Google Scholar 

  122. Baeyer, A., Villiger, V.: Ueber die Nomenclatur der Superoxyde und die Superoxyde der Aldehyde. Berichte der deutschen chemischen Gesellschaft 33, 2479–2487 (1900)

    Article  Google Scholar 

  123. Girsewald, C.: Verwendung von Hexamethylentriperoxidyddiamin zur Herstellung von Initialzündern. DE Patent 274,522, 1912

    Google Scholar 

  124. Ilyushin, M.A., Tselinsky, I.V., Shugalei, I.V., Chernay, A.V., Toftunova, V.V.: “Green” polymer-bound explosive (PBX) for laser initiation. In: Proceedings of 9th Seminar on New Trends in Research of Energetic Materials, pp. 602–607, Pardubice, Czech Republic, 2006

    Google Scholar 

  125. Byall, E.T.: Explosives Report 1998–2001. In: Proceedings of 13th INTERPOL Forensic Science Symposium, Lyon, France, 2001

    Google Scholar 

  126. Matyáš, R.: Grant of the Ministry of Internal Affairs of Czech Republic, Report RN 20012003003. University of Pardubice, Pardubice (2002)

    Google Scholar 

  127. Persons, J., Harbison, G.S.: The 14N quadrupole coupling in hexamethylene triperoxide diamine (HMTD). Magn. Reson. Chem. 45, 905–908 (2007)

    Article  CAS  Google Scholar 

  128. Vennerstrom, J.L.: Amine peroxides as potential antimalarials. J. Med. Chem. 32, 64–67 (1989)

    Article  CAS  Google Scholar 

  129. Girsewald, C., Siegens, H.: Beiträge zur Kenntnis des Wasserstoffperoxyds. II. Tetramethylen-diperoxyd-dicarbamid. Berichte der deutschen chemischen Gesellschaft 47, 2464–2469 (1914)

    Article  Google Scholar 

  130. Peña-Quevedo, A.J.: Cyclic organic peroxides identification and trace analysis by Raman microscopy and open-air chemical ionization mass spectroscopy. University of Puerto Rico, PhD thesis, Puerto Rico (2009)

    Google Scholar 

  131. Peña-Quevedo, A.J., Cody, R., Mina-Calmide, N., Ramos, M., Hernández-Rivera, S.P.: Characterization and differentiation of high energy amine peroxides by direct analysis in real time TOF/MS. Proc. SPIE 6538, 653828-1, 2007

    Google Scholar 

  132. Weale, A., Renfrew, A.: Improvements in or relating to explosive priming compositions. GB Patent 415,779, 1934

    Google Scholar 

  133. Spaeth, C.P.: Ignition composition. US Patent 1,984,846, 1934

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matyáš, R., Pachman, J. (2013). Organic Peroxides. In: Primary Explosives. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28436-6_10

Download citation

Publish with us

Policies and ethics