Skip to main content

Fabrication of Low Dimensional Nanowire-Based Devices using Dieletrophoresis

  • Chapter
  • First Online:
  • 1960 Accesses

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Bottom-up assembly of nanostructured materials, such as metallic nanowires and carbon nanotubes, has proven to be a facile way of building electronic devices or sensing platforms with unparallel ease of device dimension control. Electric field assisted manipulation of roughly 320 nm diameter \(6\,\mu \mathrm{m}\) long nanowires with composition of Au–Ag–Au under ac bias across the lithographically defined parallel electrodes forms the basis of bottom-up assembly approach followed in this study. Nanowires were first aligned electrofluidically under ac bias of 10 Vpp and 1 kHz across 5 and \(6\,\mu \mathrm{m}\) separated electrodes. Chemical etching of the Ag segment in the nanowires aligned across the predefined electrodes resulted in reduction of the dimension of the electrode separation from \(5\,\mu \mathrm{m}\) to 50–100 nm. The alignment yield of \(6\,\mu \mathrm{m}\) Au–Ag–Au striped nanowires across gold electrodes was as high as 70%. The nanowires-based device was employed to the capture and electrical characterization of preferably a single 100 nm Au nanosphere in the nanogap.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. I. Amlani, A.M. Rawlett, L. Nagahara, K.R. Tsui. An approach to transport measurements of electronic molecules. Appl. Phys. Lett. 80, 2761–2763 (2002)

    Google Scholar 

  2. C.L. Asbury, G. van den Engh. Trapping of DNA in nonuniform oscillating electric fields. Biophys. J. 74, 1024–1030 (1998)

    Google Scholar 

  3. M.A. Banger, C.M. Hangarter, B. Yoo, Y. Rheem, W. Chen, A. Mulchandani, N.V. Myung. Magnetically assembled multisegmented Nanowires and their applications. Electroanalysis. 21, 61–67 (2009)

    Google Scholar 

  4. A. Bezryadin,C. Dekker, G. Schmid. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl. Phys. Lett. 71, 1273–1275 (1997)

    Google Scholar 

  5. K.H. Bhatt, O.D. Velev. Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires. Langmuir. 20, 467–476 (2004)

    Google Scholar 

  6. E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778 (1998)

    Google Scholar 

  7. Y. Cui, Q. Wei, C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science. 293, 1289–1292 (2001)

    Google Scholar 

  8. S.A. Dayeh, C. Soci, P.K.L. Yu, E.T. Yu, D. Wang, Influence of surface states on the extraction of transport parameters from InAs nanowire field effect transistors. Appl. Phys. Lett. 90, 16212-1–16212-3 (2007)

    Google Scholar 

  9. F. Dewarrat, M. Calame, C. Schonenberger, Orientation and Positioning of DNA molecules with an electric field technique. Single Mol. 3, 189–193 (2002)

    Google Scholar 

  10. C. Durkan, M.A. Scheider, M.E. Welland, Analysis of failure mechanisms in electrically stresses Au nanowires. Appl. Phys. Lett. 86, 1280–1286 (1999)

    Google Scholar 

  11. P.R.C. Gascoyne, J. Vykoukal, Particle separation by dielectrophoresis. Electrophoresis 23, 1973–1983 (2002)

    Google Scholar 

  12. W.A. Germishuizen, C. Walti, R. Wirtz, M.B. Johnston, M. Pepper, A.G. Davies, A.P.J. Middleberg, Selective dielectrophoretic manipulation of surface immobilized DNA molecules. Nanotechnology 14, 896–902 (2003)

    Google Scholar 

  13. J.K. Gimzewski, C. Joachim, Nanoscale science of single molecules using local probes. Science 283, 1683–1688 (2002)

    Google Scholar 

  14. C. Gurtner, E. Tu, N. Jamshidi, R.W. Haigis, T.J. Onofrey, C.F. Edman, R. Sosnowski, B. Wallace, M.J. Heller, Microelectronic array devices and techniques for electric field enhanced DNA hybridization in low-conductance buffers. Electrophoresis 23, 1543–1550 (2002)

    Google Scholar 

  15. V. Haguet, D. Martin, L. Marcon, T. Heim, D. Stievand, Combines nanogap nanoparticles nanosensor for electrical detection of biomolecular interactions between polypeptides. Appl. Phys. Lett. 84, 1312–1215 (2004)

    Google Scholar 

  16. B. Hartzell, B. McCord, D. Asare, H. Chen, J.J. Heremans, V. Soghomonian, Comporative current-voltage characteristcs of nicked and repaired DNA. Appl. Phys. Lett. 82, 4800 (2003)

    Google Scholar 

  17. B. He, T.J. Morrow, C.D. Keating, Nanowire sensors for multiplexed detection of biomolecules. Curr. Opin. Chem. Biol. 12, 522–528 (2008)

    Google Scholar 

  18. M.J. Heller, E. Tu, R. Martinsons, R.R. Anderson, C. Gurtner, A. Forster, R. Sosnowski: Active microelectronic array systems for DNA hybridization, genotyping, pharmacogenomics and nanofabrication Applications. In: Dekker, M. (eds.) Integrated Microfabricated Devices, pp. 223–270, Heller and Guttman, Chap. 10 (2002)

    Google Scholar 

  19. R. Holzel, N. Gajovic-Eichelmann, F.F. Bier, Oriented and vectorial immobilization of linear M13 dsDNA between interdigitaded electrodes-towards single molecule DNA nanostructures. Biosens. Bioelectron. 18, 555–564 (2003)

    Google Scholar 

  20. J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review. Sens. Actuators B 54, 3 (1998)

    Google Scholar 

  21. Y. Huang, X. Duan, Q. Wei, C.M. Lieber, One-dimensional nanostructures into functional Networks. Science 291, 630–633 (2001)

    Google Scholar 

  22. Y. Huang, J. Mo Yang, P.J. Hopkins, S. Kassagne, M. Tirido, A.H. Forster, H. Reese, Separations of simulants of biological warfare agents from blood by a miniaturized dielectrophoresis device. Biomed. Microdevices 5, 217–225 (2003)

    Google Scholar 

  23. M.P. Hughes, Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis 23, 2569–2582 (2002)

    Google Scholar 

  24. A. Javey, S. Nam, R.S. Friedman, H. Yan, C.M. Lieber, Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 7, 773–777 (2007)

    Google Scholar 

  25. T.B. Jones, Electromechanics of Particles (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  26. Y.V. Kervennic, H.S.J. van der Zant, A.F. Morpurgo, L. Gurevich, L.P. Kouwenhoven, Nanometer-spaced electrodes with calibrated separation. Appl. Phys. Lett. 80, 321–323 (2002)

    Google Scholar 

  27. S.I. Khondaker, Z. Yao, Fabrication of nanometer spaced electrodes using gold nanoparticles. Appl. Phys. Lett. 81, 4613 (2002)

    Google Scholar 

  28. D.L. Klein, P.L. McEuen, J.E. Bowen Katari, R. Roth, A.P. Alivisatos, An approach to electrical studies of single nanocrystals. Appl. Phys. Lett. 68, 2574 (1996)

    Google Scholar 

  29. J.F. Klemic, E. Stern, M.A. Reed, Hotwiring biosensors. Nat. Biotechnol. 19, 294–295 (2001)

    Google Scholar 

  30. R. Krahne, A. Yacoby, A. Shtrikman, I. Bar-Joseph, T. Dadosh, J. Sperling, Fabrication of nanoscale gaps in integrated circuits. Appl. Phys. Lett. 81, 730–733 (2002)

    Google Scholar 

  31. R. Krahne, T. Dadosh, Y. Gordin, A. Yacoby, A. Shtrikman, D. Mahalu, J. Sperling, I. Bar-Joseph, Nanoparticles and nanogaps: controlled positioning and fabrication. Phys. E 17, 498–502 (2003)

    Google Scholar 

  32. C.Z. Li, H.X. He, A. Bogozi, J.S. Bunch, N.J. Tao, Molecular detection based on conductance quantization of nanowires. Appl. Phys. Lett. 76, 1333–1335 (2000)

    Google Scholar 

  33. K. Liu, P.H. Avouris, J. Bucchignano, R. Martel, S. Sun, J. Michi, Simple fabrication scheme for sub-10nm electrode gaps using electron beam lithography. Appl. Phys. Lett. 80, 865–867 (2002)

    Google Scholar 

  34. R. Mariella, MEMS for bio-assays. Biomed. Microdevices 4, 77–87 (2002)

    Google Scholar 

  35. H. Morgan, M.P. Hughes, N.G. Green, Separation of submicron bioparticles by dielectrophoresis. Biophys. J. 77, 516–525 (1999)

    Google Scholar 

  36. A.F. Morpurgo, C.M. Marcus, D.B. Robinson, Controlled fabrication of metallic electrodes with atomic separation. Appl. Phys. Lett. 74, 2084–2086 (1999)

    Google Scholar 

  37. A. Motayed, M. He, A.V. Davydov, J. Melngailis, S.N. Mohammad, Realization of reliable GaN nanowire transistors utilizing dielectrophoretic alignment technique. J. Appl. Phys. 100, 114310-9 (2006)

    Google Scholar 

  38. S.R. Nicewarner-Pena, R.G. Freeman, B.D. Reiss, L. He, D.J. Pena, I.D. Walton, R. Cromer, C.D. Keating, M.J. Natan, Submicrometer metallic barcodes. Science 294, 137–141 (2001)

    Google Scholar 

  39. S. Niyogi, C. Hangarter, R.M. Thamankar, Y. Chiang, R. Kawakami, N.V. Myung, R.C. Haddon, Magnetically assembled multiwalled carbon nanotubes on ferromagnetic contacts. J. Phys. Chem. B 108, 19818–19824 (2004)

    Google Scholar 

  40. J. Park, A.N. Pasupathy, J.I. Goldsmith, A.V. Soldatov, C. Chang, Y. Yaish, J.P. Sethna, H.D. Abruna, D.C. Ralph, P.L. McEun, Wiring up single molecules. Thin Solid Films 438439, 457–461 (2003)

    Google Scholar 

  41. H. Park, A.K.L. Lim, A.P. Alivisatos, J. Park, P.L. McEuen, Fabricatiom of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301–303 (1999)

    Google Scholar 

  42. S.J. Park, A. Taton, C.A. Mirkin, Array based electrical detection of DNA with nanoparticle probes. Science 295, 1503 (2002)

    Google Scholar 

  43. R. Pethig, V. Bressler, Y. Chen, K.M. Tate, Dielectrophoretic studies of the activation of human T lymphocytes using a newly developed cell profiling system. Electrophoresis 23, 2057–2063 (2002)

    Google Scholar 

  44. H.A. Pohl, Dielectrophoresis (Cambridge University Press, Cambridge, 1978)

    Google Scholar 

  45. D. Porath, Y. Levi, M. Tarabiah, O. Millo, Tunneling spectroscopy of isolated C60 molecules in the presence of charging effects. Phys. Rev. B 56, 9829–9833 (1997)

    Google Scholar 

  46. D. Porath, A. Bezryadin, S. Vries, C. Dekker, Direct measurements of electrical transport through DNA molecules. Nature 403, 635–638 (2000)

    Google Scholar 

  47. S. Raychaudhuri, S.A. Dayeh, D. Wang, E.T. Yu, Precise semiconductor nanowire placement through dielectrophoresis. Nano Lett. 9, 2260–2266 (2009)

    Google Scholar 

  48. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Conductance of molecular junctions. Science 278(5336), 252–254 (1997)

    Google Scholar 

  49. B.D. Reiss, R. Griffith Freeman, I.D. Walton, S.M. Norton, P.C. Smith, W.G. Stamos, C.D. Keating, M.J. Natan, Electrochemical synthesis and optical readout of striped metal rods with submicron features. J. Electroanalyt. Chem. 522, 95–103 (2002)

    Google Scholar 

  50. P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, T.E. Mallouk, Electric-field assisted assembly of metallic nanowires. Appl. Phys. Lett. 77, 1399–1401 (2000)

    Google Scholar 

  51. R. Sordan, M. Burghard, K. Kern, Removable template route to metallic nanowires and nanogaps. Appl. Phys. Lett. 79, 2073–2075 (2001)

    Google Scholar 

  52. C.P.T. Svensson, T. Martensson, J. Tragardh, C. Larsson, M. Rask, D. Hessman, J. Samuelson, J. Ohlsson, Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. Nanotechnology 19, 305201–305207 (2008)

    Google Scholar 

  53. M. Tanase, D.M. Silevitch, A. Hultgreen, L.A. Bauer, P.C. Searson, G.J. Meyer, D.H. Reich, Magnetic trapping and self-assembly of multicomponent nanowires. J. Appl. Phys. 91, 8549–8551 (2002)

    Google Scholar 

  54. C. Thelander, L.E. Fröberg, C. Rehnstedt, L. Samuelson, L.-E. Wernersson, Vertical enhancement-mode InAs nanowires field-effect transistor with 50 nm wrap gate. IEEE Electron Device Lett. 29, 206–208 (2008).

    Google Scholar 

  55. O.D. Velev, E.W. Kaler, In situ assembly of colloidal particles into miniaturized biosensors. Langmuir 15, 3693–3698 (1999)

    Google Scholar 

  56. D. Wang, S. Jin, Y. Wu, C.M. Lieber, Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3, 1255–1259 (2003)

    Google Scholar 

  57. M. Washizu, O. Kurosawa, Electrical manipulation of DNA in microfabricated structures. IEEE Trans. Indust. Appl. 26, 1165–1172 (1990)

    Google Scholar 

  58. M. Washizu, O. Kurosawa, I. Arai, S. Suziki, N. Shimamoto, Application of electrostatic stretch-and positioning of DNA. IEEE Trans. Indust. Appl. 31, 447–456 (1995)

    Google Scholar 

  59. S. Weiss Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999)

    Google Scholar 

  60. H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, R. Stelzl, C. Klingshirn, H. Kalt, Ordered, uniform-sized ZnO nanolaser arrays. Appl. Phys. Lett. 91, 181112-1–181112-3 (2007)

    Google Scholar 

Download references

Acknowledgements

This chapter was prepared partly from nanowires-based nanoelectronics research at Penn State University, State College, PA. The author acknowledges great help of Dr. Mingwei Lie for microfabrication and invaluable contributions and research idea of professors Christine Keating and Theresa Mayer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramazan Kizil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kizil, R. (2013). Fabrication of Low Dimensional Nanowire-Based Devices using Dieletrophoresis. In: Ünlü, H., Horing, N. (eds) Low Dimensional Semiconductor Structures. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28424-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28424-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28423-6

  • Online ISBN: 978-3-642-28424-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics