Optical Studies of Semiconductor Quantum Dots

Part of the NanoScience and Technology book series (NANO)


Optical absorption (ABS), steady-state photoluminescence (PL), resonant Raman, and photoabsorption (PA) spectroscopies are employed to study quantum-size effects in II–VI semiconductor quantum dots (QDs) grown in glass samples. We observe a size-dependent shift in the energetic position of the first exciton peak and have examined the photoinduced evolution of the differential absorption spectra. The Raman shifts of the phonon modes are employed to monitor stoichiometric changes in the composition of the QDs during growth. Two sets of glass samples were prepared from color filters doped with CdS x Se1 − x and Zn x Cd1 − x Te. We analyze the optical properties of QDs through the ABS, PL, resonant Raman, and PA spectroscopies. The glass samples were prepared from commercially available semiconductor doped filters by a two-step thermal treatment. The average size of QDs is estimated from the energetic position of the first exciton peak in the ABS spectrum. A calculation based on a quantized-state effective mass model in the strong confinement regime predicts that the average radius of QDs in the glass samples ranges from 2.9 to 4.9 nm for CdTe and from 2.2 to 9.3 nm for CdS0. 08Se0. 92. We have also studied the nonlinear optical properties of QDs by reviewing the results of size-dependent photoinduced modulations in the first exciton band of CdTe QDs studied by PA spectroscopy.


Exciton Peak Phonon Confinement Energetic Position Quantized Energy Level Raman Peak Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.I. Ekimov, A.A. Onushchenko, JETP Lett. 34, 345 (1981)Google Scholar
  2. 2.
    C. Flytzanis, F. Harbe, M.C. Klein, D. Ricard, in Optics in Complex Systems (SPIE, Bellingham, 1990)Google Scholar
  3. 3.
    R. Jain, R.C. Lin, J. Opt. Soc. Am. 73, 647 (1983)Google Scholar
  4. 4.
    A.J. Nozik, Phys. E 14, 115 (2002)Google Scholar
  5. 5.
    W.C.W. Chan, D.J. Maxwell, X. Gao, R.E. Bailey, M. Han, S. Nie, Curr. Opin. Microbiol. 13, 40 (2002)Google Scholar
  6. 6.
    N.F. Borelli, D.W. Hall, H.J. Holland, D.W. Smith, J. Appl. Phys. 61, 5399 (1987)Google Scholar
  7. 7.
    G. Banfi, V. Degiorgio, D. Ricard, Adv. Phys. 47, 447 (1998)Google Scholar
  8. 8.
    T.M. Hayes, L.B. Lurio, P.D. Persans, J. Phys. Condens. Matter 13, 425 (2001)Google Scholar
  9. 9.
    L.A. Padilha, A.A.R. Neves, E. Rodriguez, C.L. Cesar, L.C. Barbosa, C.H. Brito Cruz, Appl. Phys. Lett. 86, 161111 (2005)Google Scholar
  10. 10.
    Y. Fuyu, J.M. Parker, Mater. Lett. 6, 233 (1988)Google Scholar
  11. 11.
    M.H. Yukselici, J. Phys. Condens. Matter 14, 1153 (2002)Google Scholar
  12. 12.
    G. Mei, S. Carpenter, P.D. Persans, Solid State Commun. 80, 557 (1991)Google Scholar
  13. 13.
    K.L. Stokes, P.D. Persans, Mater. Res. Soc. Symp. Proc. 358, 241 (1995)Google Scholar
  14. 14.
    G. Mei, J. Phys. Condens. Matter 4, 7521 (1992)Google Scholar
  15. 15.
    D.R.M. Junior, F. Qu, A.M. Alcalde, N.O. Dantas, Microelectronics J. 34, 643 (2003)Google Scholar
  16. 16.
    J.A. Williams, G.E. Rindone, H.A. McKinstry, J. Am. Ceramic Soc. 64, 702 (1981)Google Scholar
  17. 17.
    S.A. Gurevich, A.I. Ekimov, A.I. Kudryavtsev, O.G. Lyubliskaya, A.V. Osinskii, A.S. Usikov, N.N. Faleev, Semiconductors 28, 486 (1994)Google Scholar
  18. 18.
    R.J. Borg, G.J. Dienes, An Introduction to Solid State Diffusion (Academic Press, London, 1988)Google Scholar
  19. 19.
    I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961)Google Scholar
  20. 20.
    D. Turnbull, in Solid State Physics, ed. by F. Seitz, D. Turnbull (Academic, New York, 1956)Google Scholar
  21. 21.
    E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics, vol. 10 (Pergamon, Oxford, 1981)Google Scholar
  22. 22.
    R. Kampmann, R. Wagner, Decomposition of Alloys: The Early Stages (Pergamon, Oxford, 1984)Google Scholar
  23. 23.
    L. Brus, Appl. Phys. 53, 465 (1991)Google Scholar
  24. 24.
    V.L. Colvin, K.L. Cunningham, A.P. Alivisatos, J. Chem. Phys. 101, 7122 (1994)Google Scholar
  25. 25.
    C. Flytzanis, D. Ricard, M.C. SchanneKlein, J. Lumin. 70, 212 (1996)Google Scholar
  26. 26.
    A.L. Efros, M. Rosen, Annu. Rev. Mater. Sci. 30, 475 (2000)Google Scholar
  27. 27.
    A.D. Yoffe, Adv. Phys. 50, 1 (2001)Google Scholar
  28. 28.
    A.V. Rodina, A.L. Efros, A.Y. Alekseev, Phys. Rev. B 67, 155312 (2003)Google Scholar
  29. 29.
    F. Henneberger, J. Puls, Ch. Spiegelberg, A. Schülzgen, H. Rossman, V. Jungnickel, A.I. Ekimov, Semicond. Sci. Technol. 16, A41 (1991)Google Scholar
  30. 30.
    M.H. Yukselici, C. Allahverdi, J. Lumin. 128, 537 (2008)Google Scholar
  31. 31.
    A. Tu, P.D. Persans, Appl. Phys. Lett. 58, 1506 (1991)Google Scholar
  32. 32.
    B. Can Ömür, A. Aşıkoğlu, Ç. Allahverdi, M.H. Yükselici, J. Mater Sci. 45, 112 (2010)Google Scholar
  33. 33.
    M.H. Yükselici, Ç. Allahverdi, H. Athalin, Mater. Chem. Phys. 119, 218 (2010)Google Scholar
  34. 34.
    Y.N. Hwang, S. Shin, H.L. Park, S.H. Park, U. Kim, H.S. Jeong, E. Shin, D. Kim, Phys. Rev. B 54, 15129 (1996)Google Scholar
  35. 35.
    H. Yükselici, P.D. Persans, T.M. Hayes, Phys. Rev. B 52, 11763 (1995)Google Scholar
  36. 36.
    X.S. Zhao, J. Schroeder, P.D. Persans, T.G. Bilodeau, Phys. Rev. B 43, 12580 (1991)Google Scholar
  37. 37.
    J. Schroeder, M. Silvestri, X.S. Zhao, P. Persans, L.W. Hwang, Mater. Res. Soc. Symp. Proc. 272, 251 (1992)Google Scholar
  38. 38.
    A. Tu, Ph.D. thesis, Rensselaer Polytechnic Institute (1991)Google Scholar
  39. 39.
    H. Richter, Z.P. Wang, L. Ley, Solid State Commun. 39, 625 (1981)Google Scholar
  40. 40.
    P.M. Fauchet, I.H. Camphell, Crit. Rev. Solid State Mater. Sci. 14, 579 (1988)Google Scholar
  41. 41.
    Rong He, Hongchen Gu, Colloids Surf. A: Physicochem. Eng. Aspects 272, 111 (2006)Google Scholar
  42. 42.
    F. Hache, M.C. Klein, D. Ricard, C. Flytzanis, J. Opt. Soc. Am. B 8, 1802 (1991)Google Scholar
  43. 43.
    N. Peyghambarian, S.W. Koch, A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice-Hall, Enlewood Cliffs, 1993), pp. 333–335Google Scholar
  44. 44.
    V. Esch, B. Fluegel, G. Khitrova, H.M. Gibbs, Xu Jiajin, K. Kang, S.W. Koch, L.C. Liu, S.H. Risbud, N. Peyghambarian, Phys. Rev. B 42, 7450 (1990)Google Scholar
  45. 45.
    L.A. Padilha, A.A.R. Neves, C.L. Cesar, L.C. Barbosa, C.H.B. Cruz, Appl. Phys. Lett. 85, 3256 (2004)Google Scholar
  46. 46.
    , S. Nomura, T. Kobayashi, Solid State Commun. 73, 425 (1990)Google Scholar
  47. 47.
    K.L. Stokes, H. Yukselici, P.D. Persans, Solid State Commun. 92, 195 (1994)Google Scholar
  48. 48.
    K.L. Stokes, P.D. Persans, Phys. Rev. B 54, 1892 (1996)Google Scholar
  49. 49.
    WC. Chan, S. Nie, Science 281, 2016–2018 (1998)Google Scholar
  50. 50.
    M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281, 2013–2016 (1998)Google Scholar
  51. 51.
    T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, AL. Rogach, S. Keller, J. Radler, G. Natile, W.J. Parak, Nano Lett. 4, 703–707 (2004)Google Scholar
  52. 52.
    K. Hanaki, A. Momo, T. Oku, A. Komoto, S. Maenosono, Y. Yamaguchi, K. Yamamoto, Biochem. Biophys. Res. Commun. 302, 496–501 (2003)Google Scholar
  53. 53.
    E.R. Goldman, E.D. Balighian, H. Mattoussi, M.K. Kuno, J.M. Mauro, P.T. Tran, G.P. Anderson, J. Am. Chem. Soc. 124, 6378–6382 (2002)Google Scholar
  54. 54.
    M.E. Akerman, W.C. Chan, P. Laakkonen, S.N. Bhatia, E. Ruoslahti, Proc. Natl. Acad. Sci. USA 99, 12617–12621 (2002)Google Scholar
  55. 55.
    R. Mahtab, J.P. Rogers, C.J. Murphy, J. Am. Chem. Soc. 117, 9099–9100 (1995)Google Scholar
  56. 56.
    F. Osaki, F. Kanamori, S. Sando, T. Sera, Y. Aoyama, J. Am. Chem. Soc. 126, 6520–6521 (2004)Google Scholar
  57. 57.
    Y.F. Chen, T.H. Ji, Z. Rosenzweig, Nano Lett. 3, 581–584 (2003)Google Scholar
  58. 58.
    R. Savic, L.B. Luo, A. Eisenberg, D. Maysinger, Science 300, 615–618 (2003)Google Scholar
  59. 59.
    P.L. Soo, L.B. Luo, D. Maysinger, A. Eisenberg, Langmuir 18, 9996–10004 (2002)Google Scholar
  60. 60.
    R. Ince, E. Sınır, M. Feeney, M.H. Yükselici, A.T. Ince, Opt. Commun. 281, 3831–3836 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsYıldız Technical UniversityDavutpaşa, IstanbulTurkey
  2. 2.Department of PhysicsYıldız Technical UniversityDavutpaşa, IstanbulTurkey
  3. 3.Department of Physics, Faculty of Science and LettersIstanbul Technical UniversityMaslak, IstanbulTurkey
  4. 4.Department of ChemistryIstanbul Technical UniversityMaslak, IstanbulTurkey
  5. 5.Department of Genetics and BioengineeringYeditepe UniversityKayışdağı, IstanbulTurkey
  6. 6.Department of PhysicsYeditepe UniversityKayışdağı, IstanbulTurkey
  7. 7.Inst Mat Jean RouxelUniv Nantes, CNRSNantesFrance

Personalised recommendations