Advertisement

Functionalization of Graphene Nanoribbons

Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

With the synthesis of a single atomic plane of graphite, namely, graphene honeycomb structure, a new perspective for carbon-based electronics is opened. The one-dimensional graphene nanoribbons (GNRs) have different band-gap values depending on their edge shape and width. In this contribution, we report our results showing that repeated heterostructures of GNRs of different widths form multiple quantum-well structures. The widths of the constituent parts as well as the bandgap, and also the magnetic ground state of the superlattices are modulated in direct space. We provide detailed analysis of these structures and show that superlattices with armchair edge shapes can be used as resonant tunneling devices and those with zigzag edge shape have unique features for spintronic applications. We also discuss another route of functionalizing 2D graphene, 1D GNR, and superlattices with 3d-transition metal (TM) atom adsorption.

Keywords

High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Resonant Tunneling Graphene Ribbon Superlattice Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Yiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)Google Scholar
  2. 2.
    L.D. Landau, E.M. Lifshitz, Statistical Physics, 3rd edn. (Pergamon, Oxford, 1980)Google Scholar
  3. 3.
    R.E. Peirls, Helv. Phys. Acta 7, 81 (1934)Google Scholar
  4. 4.
    N.D. Mermin, Phys. Rev. 176, 250 (1968)Google Scholar
  5. 5.
    S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, Salim Ciraci, unpublished (arXiv:0811.4412)Google Scholar
  6. 6.
    M. Topsakal, E. Akturk, S. Ciraci, Phys. Rev. B 79, 115442 (2009)Google Scholar
  7. 7.
    M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006)Google Scholar
  8. 8.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)Google Scholar
  9. 9.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005); Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)Google Scholar
  10. 10.
    C. Ataca, E. Aktiirk, S. Ciraci, H. Ustunel, Appl. Phys. Lett. 93, 043123 (2008)Google Scholar
  11. 11.
    C. Ataca, E. Akturk, S. Ciraci, Phys. Rev. B 79, 041406 (2009)Google Scholar
  12. 12.
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater. 6, 652 (2007)Google Scholar
  13. 13.
    T.B. Martins, R.H. Miwa, A.J.R. da Silva, A. Fazzio, Phys. Rev. Lett. 98, 196803 (2007)Google Scholar
  14. 14.
    M. Topsakal, H. Sevincli, S. Ciraci, Appl. Phys. Lett. 92, 173118 (2008)Google Scholar
  15. 15.
    H. Sahin, R.T. Senger, Phys. Rev. B 78, 205423 (2008)Google Scholar
  16. 16.
    Y.-W. Son, M. L. Cohen, S.G. Louie, Nature 444, 347 (2006) (see also erratum: Nature 446, 342 (2007))Google Scholar
  17. 17.
    Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006) (see also erratum: Phys. Rev. Lett. 98, 089901(E) (2007))Google Scholar
  18. 18.
    J. Nilsson, A.H. Castro Neto, F. Guinea, N.M.R. Peres, Phys. Rev. B 76, 165416 (2007)Google Scholar
  19. 19.
    X. Wang, Y. Ouyang, H. Wang, J. Guo, H. Dai, Phys. Rev. Lett. 100, 206803 (2008)Google Scholar
  20. 20.
    H. Sevincli, M. Topsakal, S. Ciraci, Phys. Rev. B 78, 245402 (2008)Google Scholar
  21. 21.
    C.H. Xu et al., J. Phys.: Condens. Matter 4, 6047 (1992)Google Scholar
  22. 22.
    P.R. Wallace, Phys. Rev. 71, 622 (1947)Google Scholar
  23. 23.
    G.W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984)Google Scholar
  24. 24.
    M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996)Google Scholar
  25. 25.
    L. Pisani, J.A. Chan, B. Montanari, N.M. Harrison, Phys. Rev. B 75, 064418 (2007)Google Scholar
  26. 26.
    K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996)Google Scholar
  27. 27.
    Y. Miyamoto, K. Nakada, M. Fujita, Phys. Rev. B 59, 9858 (1999)Google Scholar
  28. 28.
    M. Ezawa, Phys. Rev. B 73, 045432 (2006)Google Scholar
  29. 29.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965); P. Hohenberg, W. Kohn, Phys. Rev. B 76, 6062 (1964)Google Scholar
  30. 30.
    E.H. Lieb, Phys. Rev. Lett. 62, 1201 (1989)Google Scholar
  31. 31.
    L. Esaki, R. Tsu, IBM J. Res. Dev. 14, 61 (1970)Google Scholar
  32. 32.
    L. Esaki, L.L. Chang, Phys. Rev. Lett. 33, 495 (1974)Google Scholar
  33. 33.
    L. Esaki, Highlights in Condensed Matter Physics and Future Prospects, NATO Advanced Studies Institute, Series B: Physics (Plenum, New York, 1991), p. 285, several relevant references can be found in this proceedings; L.L. Chang, L. Esaki, R. Tsu, Appl. Phys. Lett. 24, 593 (1974)Google Scholar
  34. 34.
    E. Tekman, S. Ciraci, Phys. Rev. B 40, 8559 (1989); S. Ciraci, I. P. Batra, Phys. Rev. B 36, 6194 (1987)Google Scholar
  35. 35.
    Claire Berger, Zhimin Song, Xuebin Li, Xiaosong Wu, Nate Brown, Cecile Naud, Didier Mayou, Tianbo Li, Joanna Hass, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, Walt A. de Heer, Science 312, 1191 (2006)Google Scholar
  36. 36.
    M.-Y. Han, B. Ozyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007)Google Scholar
  37. 37.
    B. (Ozyilmaz, P.J. -Herrero, D. Efetov, P. Kim, Appl. Phys. Lett. 91, 192107 (2007)Google Scholar
  38. 38.
    R. Landauer, Philos. Mag. 21, 863 (1970)Google Scholar
  39. 39.
    S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)Google Scholar
  40. 40.
    M. Brandbyge, J.-L. Mozos, P. Ordejn, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401, (2002)Google Scholar
  41. 41.
    D. Fisher, P. Lee, Phys. Rev. B 23, 6851 (1981)Google Scholar
  42. 42.
    S. Tongay, R.T. Senger, S. Dag, S. Ciraci, Phys. Rev. Lett. 93, 136404 (2004)Google Scholar
  43. 43.
    X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 319, 1229 (2008)Google Scholar
  44. 44.
    J.F.-Rossier, J.J. Palacios, Phys. Rev. Lett. 99, 177204 (2007)Google Scholar
  45. 45.
    L. Yang, C.-H. Park, Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 99, 186801 (2007)Google Scholar
  46. 46.
    H. Sevincli, M. Topsakal, E. Durgun, S. Ciraci, Phys. Rev. B 77, 195434 (2008)Google Scholar
  47. 47.
    P.E. Blochl, Phys. Rev. B 50, 17953 (1994)Google Scholar
  48. 48.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)Google Scholar
  49. 49.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)Google Scholar
  50. 50.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993); G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsBilkent UniversityAnkaraTurkey
  2. 2.UNAM, Institute of Materials Science and NanotechnologyBilkent UniversityAnkaraTurkey
  3. 3.Department of PhysicsBilkent UniversityAnkaraTurkey
  4. 4.UNAMInstitute of Materials Science and Nanotechnology, Bilkent UniversityAnkaraTurkey

Personalised recommendations