Skip to main content

Observation of Large-Scale Multi-Agent Based Simulations

  • Conference paper
Multi-Agent-Based Simulation XII (MABS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7124))

  • 686 Accesses

Abstract

The computational cost of large-scale multi-agent based simulations (MABS) can be extremely important, especially if simulations have to be monitored for validation purposes. In this paper, two methods, based on self-observation and statistical survey theory, are introduced in order to optimize the computation of observations in MABS. An empirical comparison of the computational cost of these methods is performed on a toy problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bethlehem, J.: Applied Survey Methods: A Statistical Perspective. Wiley (2009)

    Google Scholar 

  2. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in multi-agent systems. In: Proceedings of the Third International Conference on Multi-Agent Systems (ICMAS 1998), pp. 128–135 (1998)

    Google Scholar 

  3. Gaud, N., Galland, S., Gechter, F., Hilaire, V., Koukam, A.: Holonic multilevel simulation of complex systems: Application to real-time pedestrians simulation in virtual urban environment. Simulation Modelling Practice and Theory 16, 1659–1676 (2008)

    Article  Google Scholar 

  4. Horvitz, D.G., Thompson, D.J.: A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association 47, 663–685 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kaminka, G., Pynadath, D., Tambe, M.: Monitoring teams by overhearing: A multi-agent planrecognition approach. Journal of Artificial Intelligence 17, 83–135 (2002)

    MATH  Google Scholar 

  6. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: A multiagent simulation environment. Simulation 81(7), 517–527 (2005)

    Article  Google Scholar 

  7. Michel, F., Beurier, G., Ferber, J.: The turtlekit simulation platform: Application to complex systems. In: Proceedings of the First International Conference on Signal-Image Technology and Internet Based Systems, pp. 122–127 (2005)

    Google Scholar 

  8. Parunak, H.: Between Agents and Mean Fields. In: Villatoro, D., Sabater-Mir, J., Sichman, J.S. (eds.) MABS 2011. LNCS (LNAI), vol. 7124, pp. 122–135. Springer, Heidelberg (2011)

    Google Scholar 

  9. Railsback, S., Lytinen, S., Grimm, V.: Stupidmodel and extensions: A template and teaching tool for agent-based modeling platforms (2005), http://condor.depaul.edu/~slytinen/abm/StupidModelFormulation.pdf

  10. Railsback, S., Lytinen, S., Jackson, S.: Agent-based simulation platforms: Review and development recommendations. Simulation 82(9), 609–623 (2006)

    Article  Google Scholar 

  11. Razavi, S.N., Gaud, N., Mozayani, N., Koukam, A.: Multi-agent based simulations using fast multipole method: application to large scale simulations of flocking dynamical systems. Artificial Intelligence Review 35(1), 53–72 (2011)

    Article  Google Scholar 

  12. Veremme, A., Lefevre, E., Morvan, G., Jolly, D.: Application of the belief function theory to validate multi-agent based simulations. In: First International Workshop on the Theory of Belief Functions (2010)

    Google Scholar 

  13. Wilkins, D., Lee, T., Berry, P.: Interactive execution monitoring of agent teams. Journal of Artificial Intelligence Research 18, 217–261 (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morvan, G., Veremme, A., Dupont, D. (2012). Observation of Large-Scale Multi-Agent Based Simulations. In: Villatoro, D., Sabater-Mir, J., Sichman, J.S. (eds) Multi-Agent-Based Simulation XII. MABS 2011. Lecture Notes in Computer Science(), vol 7124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28400-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28400-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28399-4

  • Online ISBN: 978-3-642-28400-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics