Skip to main content

Etiology of Congenital Melanocytic Nevi and Related Conditions

  • Chapter
  • First Online:
Nevogenesis

Abstract

Large and giant congenital melanocytic nevi (CMN) are the rarest types of a proliferative malformation affecting the pigment cells of the skin. The phenotypic presentation is highly variable, and few reports of familial transmission exist. Current models favor a somatic mutational event occurring during at or after the end of the first trimester of gestation, within the melanocyte precursor lineage, in a predisposing genetic background. The effect of potentially implicated signaling molecules on progenitor neural crest and derivative melanocyte development is discussed. Candidates include effectors such as NRAS and BRAF of the MAP kinase pathway but also other pathways that converge on transcription factors critical for either multipotent precursor maintenance or melanocyte differentiation and which may predispose cells to inappropriate proliferation in the central nervous system or at other sites. These associated proliferations can lead in a patient-dependent manner to a clinically favorable or fatal outcome. Continued exploration of the molecular bases of large and giant CMN development will lead to new tools for more accurate prognoses in both isolated and syndromic forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adameyko I, Lallemend F, Aquino JB, et al. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell. 2009;139:366–79. doi:10.1016/j.cell.2009.07.049.

    PubMed  CAS  Google Scholar 

  2. Agero ALC, Benvenuto-Andrade C, Dusza SW, et al. Asymptomatic neurocutaneous melanocytosis in patients with large congenital melanocytic nevi: a study of cases from an Internet-based registry. J Am Acad Dermatol. 2005;53:959–65. doi:10.1016/j.jaad.2005.07.046.

    PubMed  Google Scholar 

  3. Antonellis A, Huynh JL, Lee-Lin S-Q, et al. Identification of neural crest and glial enhancers at the mouse Sox10 locus through transgenesis in zebrafish. PLoS Genet. 2008;4:e1000174. doi:10.1371/journal.pgen.1000174.

    PubMed  Google Scholar 

  4. Aoki Y, Saint-Germain N, Gyda M, et al. Sox10 regulates the development of neural crest-derived melanocytes in Xenopus. Dev Biol. 2003;259:19–33.

    PubMed  CAS  Google Scholar 

  5. Aoki Y, Niihori T, Kawame H, et al. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet. 2005;37:1038–40.

    PubMed  CAS  Google Scholar 

  6. Aoki Y, Niihori T, Narumi Y, et al. The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders. Hum Mutat. 2008;29:992–1006. doi:10.1002/humu.20748.

    PubMed  CAS  Google Scholar 

  7. Azzoni A, Argentieri R, Raja M. Neurocutaneous ­melanosis and psychosis: a case report. Psychiatry Clin Neurosci. 2001;55:93–5. doi:10.1046/j.1440-1819.2001.00794.x.

    PubMed  CAS  Google Scholar 

  8. Bae JM, Kim MY, Kim HO, Park YM. Schwannoma coexisting with congenital melanocytic nevus: is it coincidence? J Am Acad Dermatol. 2007;56:S111–2. doi:10.1016/j.jaad.2006.07.033.

    PubMed  Google Scholar 

  9. Barnhill RL, Cerroni L, Cook M, et al. State of the art, nomenclature, and points of consensus and controversy concerning benign melanocytic lesions: outcome of an international workshop. Adv Anat Pathol. 2010;17:73–90.

    PubMed  Google Scholar 

  10. Baroffio A, Dupin E, Le Douarin NM. Common precursors for neural and mesectodermal derivatives in the cephalic neural crest. Development. 1991;112:301–5.

    PubMed  CAS  Google Scholar 

  11. Bastian BC, Xiong J, Frieden IJ, et al. Genetic changes in neoplasms arising in congenital melanocytic nevi: differences between nodular proliferations and melanomas. Am J Pathol. 2002;161:1163–9.

    PubMed  CAS  Google Scholar 

  12. Bauer JW, Schaeppi H, Kaserer C, et al. Large melanocytic nevi in hereditary epidermolysis bullosa. J Am Acad Dermatol. 2001;44:577–84.

    PubMed  CAS  Google Scholar 

  13. Bauer J, Curtin JA, Pinkel D, Bastian BC. Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol. 2007;127:179–82. doi:10.1038/sj.jid.5700490.

    PubMed  CAS  Google Scholar 

  14. Bell MV, Frampton J. v-Myb can transform and regulate the differentiation of melanocyte precursors. Oncogene. 1999;18:7226-33

    PubMed  CAS  Google Scholar 

  15. Benko S, Fantes JA, Amiel J, et al. Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nat Genet. 2009;41:359–64. doi:10.1038/ng.329.

    PubMed  CAS  Google Scholar 

  16. Betancur P, Bronner-Fraser M, Sauka-Spengler T. Genomic code for Sox10 activation reveals a key regulatory enhancer for cranial neural crest. Proc Natl Acad Sci USA. 2010;107:3570–5. 10.1073/pnas.0906596107.

    PubMed  CAS  Google Scholar 

  17. Bett BJ. Large or multiple congenital melanocytic nevi: occurrence of cutaneous melanoma in 1008 persons. J Am Acad Dermatol. 2005;52:793–7. doi:10.1016/j.jaad.2005.02.024.

    PubMed  Google Scholar 

  18. Bett BJ. Large or multiple congenital melanocytic nevi: occurrence of neurocutaneous melanocytosis in 1008 persons. J Am Acad Dermatol. 2006;54:767–77. doi:10.1016/j.jaad.2005.10.040.

    PubMed  Google Scholar 

  19. Bicknell AB. The tissue-specific processing of pro-opiomelanocortin. J Neuroendocrinol. 2008;20:692–9. doi:10.1111/j.1365-2826.2008.01709.x.

    PubMed  CAS  Google Scholar 

  20. Bonano M, Tribulo C, De Calisto J. A new role for the Endothelin-1/Endothelin-A receptor signaling during early neural crest specification. Dev Biol. 2008;323:114–29.

    PubMed  CAS  Google Scholar 

  21. Bondurand N, Pingault V, Goerich DE, et al. Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum Mol Genet. 2000;9:1907–17.

    PubMed  CAS  Google Scholar 

  22. Brand M, Le Moullec JM, Corvol P, Gasc JM. Ontogeny of endothelins-1 and -3, their receptors, and endothelin converting enzyme-1 in the early human embryo. J Clin Invest. 1998;101:549–59.

    PubMed  CAS  Google Scholar 

  23. Britsch S, Goerich DE, Riethmacher D, et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 2001;15:66–78.

    PubMed  CAS  Google Scholar 

  24. Broekaert SMC, Roy R, Okamoto I, et al. Genetic and morphologic features for melanoma classification. Pigment Cell Melanoma Res. 2010;23:763–70.

    PubMed  CAS  Google Scholar 

  25. Brooks C, Scope A, Braun RP, Marghoob AA. Dermoscopy of nevi and melanoma in childhood. Exp Rev Dermatol. 2011;6:19–34.

    Google Scholar 

  26. Burstein F, Seier H, Hudgins PA, Zapiach L. Neurocutaneous melanosis. J Craniofac Surg. 2005;16:874–6.

    PubMed  Google Scholar 

  27. Cajaiba MM, Benjamin D, Halaban R, Reyes-Múgica M. Metastatic peritoneal neurocutaneous melanocytosis. Am J Surg Pathol. 2008;32:156–61.

    PubMed  Google Scholar 

  28. Chen Y, Deng W, Zhu H, et al. The pathologic features of neurocutaneous melanosis in a cynomolgus macaque. Vet Pathol. 2009;46:773–5. doi:10.1354/vp.08-VP-0243-Q-BC.

    PubMed  CAS  Google Scholar 

  29. Clewes O, Narytnyk A, Gillinder KR, et al. Human epidermal neural crest stem cells (hEPI-NCSC)-characterization and directed differentiation into osteocytes and melanocytes. Stem Cell Rev. 2011. doi:10.1007/s12015-011-9255-5 (online version).

  30. Clouthier DE, Garcia E, Schilling TF. Regulation of facial morphogenesis by endothelin signaling: insights from mice and fish. Am J Med Genet A. 2010;152A:2962–73. doi:10.1002/ajmg.a.33568.

    PubMed  Google Scholar 

  31. Danarti R, Konig A, Happle R. Large congenital melanocytic nevi may reflect paradominant inheritance implying allelic loss. Eur J Dermatol. 2003;13:430–2.

    PubMed  Google Scholar 

  32. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54. doi:10.1038/nature00766.

    PubMed  CAS  Google Scholar 

  33. De Schepper S, Boucneau J, Vander Haeghen Y, et al. Café-au-lait spots in neurofibromatosis type 1 and in healthy control individuals: hyperpigmentation of a different kind? Arch Dermatol Res. 2006;297:439–49. doi:10.1007/s00403-006-0644-6.

    PubMed  Google Scholar 

  34. DeDavid M, Orlow SJ, Provost N, et al. Neurocutaneous melanosis: clinical features of large congenital melanocytic nevi in patients with manifest central nervous system melanosis. J Am Acad Dermatol. 1996;35:529–38.

    PubMed  CAS  Google Scholar 

  35. Delmas V, Beermann F, Martinozzi S, et al. Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev. 2007;21:2923–35. doi:10.1101/gad.450107.

    PubMed  CAS  Google Scholar 

  36. Dessars B, De Raeve LE, Morandini R, et al. Genotypic and gene expression studies in congenital melanocytic nevi: insight into initial steps of melanotumorigenesis. J Invest Dermatol. 2009;129:139–47. doi:10.1038/jid.2008.203.

    PubMed  CAS  Google Scholar 

  37. Dong J, Phelps RG, Qiao R, et al. BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res. 2003;63:3883–5.

    PubMed  CAS  Google Scholar 

  38. Dorshorst B, Okimoto R, Ashwell C. Genomic regions associated with dermal hyperpigmentation, polydactyly and other morphological traits in the Silkie chicken. J Hered. 2010;101:339–50. doi:10.1093/jhered/esp120.

    PubMed  CAS  Google Scholar 

  39. Dorshorst B, Molin AM, Rubin CJ, et al. A complex genomic rearrangement involving the endothelin 3 locus causes dermal hyperpigmentation in the chicken. PLoS Genetics. 2011;7:e1002412.

    PubMed  CAS  Google Scholar 

  40. Dunn LC. Studies on spotting patterns II. Genetic analysis of variegated spotting in the house mouse. Genetics. 1937;22:43–64.

    PubMed  CAS  Google Scholar 

  41. Dupin E. Phenotypic plasticity of neural crest-derived melanocytes and Schwann cells. Biol Aujourdhui. 2011;205:53–61. 10.1051/jbio/2011008.

    PubMed  CAS  Google Scholar 

  42. Dupin E, Glavieux C, Vaigot P, Le Douarin NM. Endothelin 3 induces the reversion of melanocytes to glia through a neural crest-derived glial-melanocytic progenitor. Proc Natl Acad Sci USA. 2000;97:7882–7.

    PubMed  CAS  Google Scholar 

  43. Dupin E, Real C, Glavieux-Pardanaud C, et al. Reversal of developmental restrictions in neural crest lineages: transition from Schwann cells to glial-melanocytic precursors in vitro. Proc Natl Acad Sci USA. 2003;100:5229–33.

    PubMed  CAS  Google Scholar 

  44. Easty DJ, Gray SG, OʼByrne KJ, et al. Receptor tyrosine kinases and their activation in melanoma. Pigment Cell Melanoma Res. 2011. doi:10.1111/j.1755-148X.2011.00836.x.

  45. Etchevers HC, Vincent C, Le Douarin NM, Couly GF. The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development. 2001;128:1059–68.

    PubMed  CAS  Google Scholar 

  46. Etchevers HC, Amiel J, Lyonnet S. Molecular bases of human neurocristopathies. In: Saint-Jeannet J-P, editor. Neural Crest Induction and Differentiation. Texas: Landes Bioscience; 2006. p. 213–34.

    Google Scholar 

  47. Fitch KR, McGowan KA, van Raamsdonk CD, et al. Genetics of dark skin in mice. Genes Dev. 2003;17:214–28. doi:10.1101/gad.1023703.

    PubMed  CAS  Google Scholar 

  48. Foster RD, Williams ML, Barkovich AJ, et al. Giant congenital melanocytic nevi: the significance of neurocutaneous melanosis in neurologically asymptomatic children. Plast Reconstr Surg. 2001;107:933–41.

    PubMed  CAS  Google Scholar 

  49. Frieden IJ, Williams ML, Barkovich AJ. Giant congenital melanocytic nevi: brain magnetic resonance findings in neurologically asymptomatic children. J Am Acad Dermatol. 1994;31:423–9.

    PubMed  CAS  Google Scholar 

  50. Fu Y-J, Morota N, Nakagawa A, et al. Neurocutaneous melanosis: surgical pathological features of an apparently hamartomatous lesion in the amygdala. J Neurosurg Pediatr. 2010;6:82–6.

    PubMed  Google Scholar 

  51. Garcez RC, Teixeira BL, Schmitt SDS, et al. Epidermal growth factor (EGF) promotes the in vitro differentiation of neural crest cells to neurons and melanocytes. Cell Mol Neurobiol. 2009;29:1087–91.

    PubMed  CAS  Google Scholar 

  52. Gönül M, Soylu S, Gül U, et al. Giant congenital melanocytic naevus associated with Dandy-Walker malformation, lipomatosis and hemihypertrophy of the leg. Clin Exp Dermatol. 2009;34:e106–9. doi:10.1111/j.1365-2230.2008.03191.x.

    PubMed  Google Scholar 

  53. Grichnik JM, Burch JA, Burchette J, Shea CR. The SCF/KIT pathway plays a critical role in the control of normal human melanocyte homeostasis. J Invest Dermatol. 1998;111:233–8.

    PubMed  CAS  Google Scholar 

  54. Gupta PB, Kuperwasser C, Brunet J-P, et al. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat Genet. 2005;37:1047–54.

    PubMed  CAS  Google Scholar 

  55. Hafner C, Toll A, Fernández-Casado A, et al. Multiple oncogenic mutations and clonal relationship in spatially distinct benign human epidermal tumors. Proc Natl Acad Sci USA. 2010;107:20780–5. 10.1073/pnas.1008365107.

    PubMed  CAS  Google Scholar 

  56. Hale EK, Stein J, Ben-Porat L, et al. Association of melanoma and neurocutaneous melanocytosis with large congenital melanocytic naevi–results from the NYU-LCMN registry. Br J Dermatol. 2005;152:512–7. doi:10.1111/j.1365-2133.2005.06316.x.

    PubMed  CAS  Google Scholar 

  57. Happle R. Loss of heterozygosity in human skin. J Am Acad Dermatol. 1999;41:143–64.

    PubMed  CAS  Google Scholar 

  58. Hendrickson MR, Ross JC. Neoplasms arising in congenital giant nevi: morphologic study of seven cases and a review of the literature. Am J Surg Pathol. 1981;5:109–35.

    PubMed  CAS  Google Scholar 

  59. Herraiz C, Journé F, Abdel-Malek Z, et al. Signaling from the human melanocortin 1 receptor to ERK1 and ERK2 mitogen-activated protein kinases involves transactivation of cKIT. Mol Endocrinol. 2011;25:138–56. doi:10.1210/me.2010-0217.

    PubMed  CAS  Google Scholar 

  60. Herron MD, Vanderhooft SL, Smock K, et al. Proliferative nodules in congenital melanocytic nevi: a clinicopathologic and immunohistochemical analysis. Am J Surg Pathol. 2004;28:1017–25.

    PubMed  Google Scholar 

  61. Hoang MP, Sinkre P, Albores-Saavedra J. Rhabdomyosarcoma arising in a congenital melanocytic nevus. Am J Dermatopathol. 2002;24:26–9.

    PubMed  Google Scholar 

  62. Hösli I, Holzgreve W, Danzer E, Tercanli S. Two case reports of rare fetal tumors: an indication for surface rendering? Ultrasound Obstet Gynecol. 2001;17:522–6. doi:10.1046/j.1469-0705.2001.00407.x.

    PubMed  Google Scholar 

  63. Hou L, Pavan WJ. Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf? Cell Res. 2008;18:1163–76.

    PubMed  CAS  Google Scholar 

  64. Huang C, Lee P. Phakomatosis pigmentovascularis IIb with renal anomaly. Clin Exp Dermatol. 2000;25:51–4.

    PubMed  CAS  Google Scholar 

  65. Huber WE, Price ER, Widlund HR, et al. A tissue-restricted cAMP transcriptional response: SOX10 modulates alpha-melanocyte-stimulating hormone-triggered expression of microphthalmia-associated transcription factor in melanocytes. J Biol Chem. 2003;278:45224–30.

    PubMed  CAS  Google Scholar 

  66. Hui P, Perkins A, Glusac E. Assessment of clonality in melanocytic nevi. J Cutan Pathol. 2001;28:140–4.

    PubMed  CAS  Google Scholar 

  67. Ilyas EN, Goldsmith K, Lintner R, Manders SM. Rhabdomyosarcoma arising in a giant congenital melanocytic nevus. Cutis. 2004;73:39–43; cutaneous medicine for the practitioner.

    PubMed  Google Scholar 

  68. Im S, Moro O, Peng F, Nordlund J. Activation of the cyclic AMP pathway by α-melanotropin mediates the response of human melanocytes to ultraviolet B radiation. Cancer Res. 1998;58:47–54.

    PubMed  CAS  Google Scholar 

  69. Kadonaga JN, Frieden IJ. Neurocutaneous melanosis: definition and review of the literature. J Am Acad Dermatol. 1991;24:747–55.

    PubMed  CAS  Google Scholar 

  70. Karafiat V, Dvorakova M, Pajer P, et al. Melanocyte fate in neural crest is triggered by Myb proteins through activation of c-kit. Cell Mol Life Sci. 2007;64:2975–84.

    PubMed  CAS  Google Scholar 

  71. Khakoo Y, Marghoob A. Neurocutaneous melanocytosis: outcome not uniformly fatal. J Clin Oncol. 2009;27:e136; author reply e137. doi: 10.1200/JCO.2009.24.0309.

    PubMed  Google Scholar 

  72. Kinsler V. Satellite lesions in congenital melanocytic nevi-time for a change of name. Pediatr Dermatol. 2011;1–2. doi:10.1111/j.1525-1470.2010.01199.x.

  73. Kinsler VA, Chong WK, Aylett SE, Atherton DJ. Complications of congenital melanocytic naevi in children: analysis of 16 years experience and clinical practice. Br J Dermatol. 2008;159:907–14. doi:10.1111/j.1365-2133.2008.08775.x.

    PubMed  CAS  Google Scholar 

  74. Kinsler VA, Birley J, Atherton DJ. Great Ormond Street Hospital for Children Registry for congenital melanocytic naevi: prospective study 1988–2007. Part 1-epidemiology, phenotype and outcomes. Br J Dermatol. 2009;160:143–50. doi:10.1111/j. 1365-2133. 2008.08849.x.

    PubMed  CAS  Google Scholar 

  75. Kinsler VA, Abu-Amero S, Budd P, et al. Germline melanocortin-1-receptor genotype is associated with severity of cutaneous phenotype in congenital melanocytic nevi: a role for MC1R in human fetal development. J Invest Dermatol advance online publication, May 10, 2012; doi:10.1038/jid.2012.95.

    PubMed  CAS  Google Scholar 

  76. Köksal N, Bayram Y, Murat I, et al. Neurocutaneous melanosis with transposition of the great arteries and renal agenesis. Pediatr Dermatol. 2003;20:332–4.

    PubMed  Google Scholar 

  77. Koot HM, de Waard-van der Spek F, Peer CD, et al. Psychosocial sequelae in 29 children with giant congenital melanocytic naevi. Clin Exp Dermatol. 2000;25:589–93.

    PubMed  CAS  Google Scholar 

  78. Kormos B, Belső N, Bebes A, et al. In vitro dedifferentiation of melanocytes from adult epidermis. PLoS One. 2011;6:e17197. doi:10.1371/journal.pone.0017197.

    PubMed  CAS  Google Scholar 

  79. Krengel S, Hauschild A, Schäfer T. Melanoma risk in congenital melanocytic naevi: a systematic review. Br J Dermatol. 2006;155:1–8. doi:10.1111/j.1365-2133.2006.07218.x.

    PubMed  CAS  Google Scholar 

  80. Krengel S, Breuninger H, Beckwith M, Etchevers HC. Meeting report from the 2011 international expert meeting on large congenital melanocytic nevi and neurocutaneous melanocytosis, Tübingen. Pigment Cell Melanoma Res. 2011;24(4):E1–6.

    PubMed  Google Scholar 

  81. Krengel S, Scope A, Dusza SW, Vonthein R, Marghoob AA. New recommendations for the categorization of cutaneous features of congenital melanocytic nevi. J Am Acad Dermatol 2012; Epub.

    Google Scholar 

  82. Kunisada T, Lu SZ, Yoshida H, et al. Murine cutaneous mastocytosis and epidermal melanocytosis induced by keratinocyte expression of transgenic stem cell factor. J Exp Med. 1998;187:1565–73.

    PubMed  CAS  Google Scholar 

  83. Kunisada T, Yamazaki H, Hirobe T, et al. Keratinocyte expression of transgenic hepatocyte growth factor affects melanocyte development, leading to dermal melanocytosis. Mech Dev. 2000;94:67–78.

    PubMed  CAS  Google Scholar 

  84. Küsters-Vandevelde HVN, Klaasen A, Küsters B, et al. Activating mutations of the GNAQ gene: a frequent event in primary melanocytic neoplasms of the central nervous system. Acta Neuropathol. 2009;317–323. doi:10.1007/s00401-009-0611-3.

  85. Le Douarin NM, Kalcheim C. The Neural Crest. 2nd ed. Cambridge, U.K.: Cambridge University Press; 1999. p. 1–445.

    Google Scholar 

  86. Lecoin L, Lahav R, Martin FH, et al. Steel and c-kit in the development of avian melanocytes: a study of normally pigmented birds and of the hyperpigmented mutant silky fowl. Dev Dyn. 1995;203:106–18. doi:10.1002/aja.1002030111.

    PubMed  CAS  Google Scholar 

  87. Leech SN, Bell H, Leonard N, et al. Neonatal giant congenital nevi with proliferative nodules: a clinicopathologic study and literature review of neonatal melanoma. Arch Dermatol. 2004;140:83–8. doi:10.1001/archderm.140.1.83.

    PubMed  Google Scholar 

  88. Lev S, Givol D, Yarden Y. Interkinase domain of kit contains the binding site for phosphatidylinositol 3′ kinase. Proc Natl Acad Sci USA. 1992;89:678–82.

    PubMed  CAS  Google Scholar 

  89. Li L, Fukunaga-Kalabis M, Yu H, et al. Human dermal stem cells differentiate into functional epidermal melanocytes. J Cell Sci. 2010;123:853–60. doi:10.1242/jcs.061598.

    PubMed  CAS  Google Scholar 

  90. Li Y, Zhu X, Yang L, et al. Expression and network analysis of genes related to melanocyte development in the Silky Fowl and White Leghorn embryos. Mol Biol Rep. 2011;38:1433–41.

    PubMed  CAS  Google Scholar 

  91. Limaye N, Boon LM, Vikkula M. From germline towards somatic mutations in the pathophysiology of vascular anomalies. Hum Mol Genet. 2009;18:R65–74. doi:10.1093/hmg/ddp002.

    PubMed  CAS  Google Scholar 

  92. Lin J, Takata M, Murata H, et al. Polyclonality of BRAF mutations in acquired melanocytic nevi. J Natl Cancer Inst. 2009;101:1423–7. doi:10.1093/jnci/djp309.

    PubMed  CAS  Google Scholar 

  93. Lin J, Goto Y, Murata H, et al. Polyclonality of BRAF mutations in primary melanoma and the selection of mutant alleles during progression. Br J Cancer. 2011;104:464–8. doi:10.1038/sj.bjc.6606072.

    PubMed  CAS  Google Scholar 

  94. Livingstone E, Claviez A, Spengler D, et al. Neurocutaneous melanosis: a fatal disease in early childhood. J Clin Oncol. 2009;27:2290–1. doi:10.1200/JCO.2008.20.4388.

    PubMed  Google Scholar 

  95. Lovett A, Maari C, Decarie J-C, et al. Large congenital melanocytic nevi and neurocutaneous melano­cytosis: one pediatric center’s experience. J Am Acad Dermatol. 2009;61:766–74. doi:10.1016/j.jaad.2008.11.022.

    PubMed  Google Scholar 

  96. Lu S, Slominski A, Yang S-E, et al. The correlation of TRPM1 (Melastatin) mRNA expression with microphthalmia-associated transcription factor (MITF) and other melanogenesis-related proteins in normal and pathological skin, hair follicles and melanocytic nevi. J Cutan Pathol. 2010;37(Suppl):26–40. doi:10.1111/j.1600-0560.2010.01504.x.

    PubMed  Google Scholar 

  97. Maertens O, De Schepper S, Vandesompele J, et al. Molecular dissection of isolated disease features in mosaic neurofibromatosis type 1. Am J Hum Genet. 2007;81:243–51. doi:10.1086/519562.

    PubMed  CAS  Google Scholar 

  98. Magaña M, Magaña ML. Congenital melanocytic nevus is a disease with two clinicopathologic forms of presentation. J Am Acad Dermatol. 2007;56:521–2. doi:10.1016/j.jaad.2006.09.022.

    PubMed  Google Scholar 

  99. Makin GW, Eden OB, Lashford LS, et al. Leptomeningeal melanoma in childhood. Cancer. 1999;86:878–86.

    PubMed  CAS  Google Scholar 

  100. Marghoob AA, Dusza S, Oliveria S, Halpern A. Number of satellite nevi as a correlate for neurocutaneous melanocytosis in patients with large congenital melanocytic nevi. Arch Dermatol. 2004;140:171–5. doi:10.1001/archderm.140.2.171.

    PubMed  Google Scholar 

  101. Marnet D, Vinchon M, Mostofi K, et al. Neurocutaneous melanosis and the Dandy-Walker complex: an uncommon but not so insignificant association. Childs Nerv Syst. 2009;25:1533–9. doi:10.1007/s00381-009-0976-6.

    PubMed  Google Scholar 

  102. Mehraein Y, Ehlhardt S, Wagner A, et al. Somatic mosaicism of chromosome 7 in a highly proliferating melanocytic congenital naevus in a ring chromosome 7 patient. Am J Med Genet A. 2004;131:179–85.

    PubMed  Google Scholar 

  103. Miller VS. Neurocutaneous Melanosis. In: Roach ES, Miller VS, editors. Neurocutaneous Disorders. Cambridge: Cambridge University Press; 2004. p. 71–6.

    Google Scholar 

  104. Moore-Olufemi S, Herzog C, Warneke C, et al. Outcomes in pediatric melanoma: comparing prepubertal to adolescent pediatric patients. Ann Surg. 2011;253(6):1211–5. doi:10.1097/SLA.0b013e318217e852.

    PubMed  Google Scholar 

  105. Mort RL, Hay L, Jackson IJ. Ex vivo live imaging of melanoblast migration in embryonic mouse skin. Pigment Cell Melanoma Res. 2010;23:299–301.

    PubMed  Google Scholar 

  106. Motohashi T, Yamanaka K, Chiba K, et al. Unexpected multipotency of melanoblasts isolated from murine skin. Stem Cells. 2009;27:888–97. doi:10.1634/stemcells.2008-0678.

    PubMed  CAS  Google Scholar 

  107. Nath D, Williamson NJ, Jarvis R, Murphy G. Shedding of c-Met is regulated by crosstalk between a G-protein coupled receptor and the EGF receptor and is mediated by a TIMP-3 sensitive metalloproteinase. J Cell Sci. 2001;114:1213–20.

    PubMed  CAS  Google Scholar 

  108. Niihori T, Aoki Y, Narumi Y, et al. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet. 2006;38:294–6. doi:10.1038/ng1749.

    PubMed  CAS  Google Scholar 

  109. Paratore C, Goerich DE, Suter U, et al. Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development. 2001;128:3949–61.

    PubMed  CAS  Google Scholar 

  110. Patton EE, Widlund HR, Kutok JL, et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol. 2005;15:249–54. doi:10.1016/j.cub.2005.01.031.

    PubMed  CAS  Google Scholar 

  111. Paulhe F, Wehrle-Haller M, Jacquier M-C, et al. Dimerization of Kit-ligand and efficient cell-surface presentation requires a conserved Ser-Gly-Gly-Tyr motif in its transmembrane domain. FASEB J. 2009;23(9):3037–48.

    PubMed  CAS  Google Scholar 

  112. Pavlidou E, Hagel C, Papavasilliou A, et al. Neurocutaneous melanosis: report of three cases and up-to-date review. J Child Neurol. 2008;23:1382–91. doi:10.1177/0883073808319069.

    PubMed  Google Scholar 

  113. Pavlidou E, Hagel C, Papavasilliou A, et al. Neurocutaneous melanosis: report of three cases and up-to-date review. J Child Neurol. 2008;23:1382–91. doi:10.1177/0883073808319069.

    PubMed  Google Scholar 

  114. Peters R, Jansen G, Engelbrecht V. Neurocutaneous melanosis with hydrocephalus, intraspinal arachnoid collections and syringomyelia: case report and literature review. Pediatr Radiol. 2000;30:284–8.

    PubMed  CAS  Google Scholar 

  115. Phadke PA, Rakheja D, Le LP, et al. Proliferative nodules arising within congenital melanocytic nevi: a histologic, immunohistochemical, and molecular analyses of 43 cases. Am J Surg Pathol. 2011;35:656–69.

    PubMed  Google Scholar 

  116. Pla P, Alberti C, Solovʼeva O, et al. Ednrb2 orients cell migration towards the dorsolateral neural crest pathway and promotes melanocyte differentiation. Pigment Cell Res. 2005;18:181–7.

    PubMed  CAS  Google Scholar 

  117. Pollock PM, Harper UL, Hansen KS, et al. High frequency of BRAF mutations in nevi. Nat Genet. 2003;33:19–20.

    PubMed  CAS  Google Scholar 

  118. Potterf SB, Furumura M, Dunn KJ, et al. Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet. 2000;107:1–6.

    PubMed  CAS  Google Scholar 

  119. Poumay Y, Mitev V. Members of the EGF receptor family in normal and pathological epidermis. Folia Med. 2009;51:5–17.

    Google Scholar 

  120. Powell MB, Hyman P, Bell OD, et al. Hyperpigmentation and melanocytic hyperplasia in transgenic mice expressing the human T24 Ha-ras gene regulated by a mouse tyrosinase promoter. Mol Carcinog. 1995;12:82–90.

    PubMed  CAS  Google Scholar 

  121. Price HN, Schaffer JV. Congenital melanocytic nevi-when to worry and how to treat: facts and controversies. Clin Dermatol. 2010;28:293–302. doi:10.1016/j.clindermatol.2010.04.004.

    PubMed  Google Scholar 

  122. Puig I, Champeval D, De Santa BP, et al. Deletion of Pten in the mouse enteric nervous system induces ganglioneuromatosis and mimics intestinal pseudoobstruction. J Clin Invest. 2009;119:3586–96. doi:10.1172/JCI39929.

    PubMed  CAS  Google Scholar 

  123. Rao MS, Anderson DJ. Immortalization and controlled in vitro differentiation of murine multipotent neural crest stem cells. J Neurobiol. 1997;32:722–46.

    PubMed  CAS  Google Scholar 

  124. Ratajczak MZ, Perrotti D, Melotti P, et al. Myb and ets proteins are candidate regulators of c-kit expression in human hematopoietic cells. Blood. 1998;91:1934–46.

    PubMed  CAS  Google Scholar 

  125. Real C, Glavieux-Pardanaud C, Vaigot P, et al. The instability of the neural crest phenotypes: Schwann cells can differentiate into myofibroblasts. Int J Dev Biol. 2005;49:151–9.

    PubMed  CAS  Google Scholar 

  126. Reardon W, Zhou X-P, Eng C. A novel germline mutation of the PTEN gene in a patient with macrocephaly, ventricular dilatation, and features of VATER association. J Med Genet. 2001;38:820–3. doi:10.1136/jmg.38.12.820.

    PubMed  CAS  Google Scholar 

  127. Reed RJ. Giant congenital nevi: a conceptualization of patterns. J Invest Dermatol. 1993;100:300S–12.

    PubMed  CAS  Google Scholar 

  128. Rendl M, Lewis L, Fuchs E. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol. 2005;3:e331.

    PubMed  Google Scholar 

  129. Reyes-Mugica M, Chou P, Byrd S, et al. Nevomelanocytic proliferations in the central nervous system of children. Cancer. 1993;72:2277–85.

    PubMed  CAS  Google Scholar 

  130. Rodriguez-Viciana P, Tetsu O, Tidyman WE, et al. Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science. 2006;311:1287–90. doi:10.1126/science.1124642.

    PubMed  CAS  Google Scholar 

  131. Schaffer JV, Chang MW, Kovich OI, et al. Pigmented plexiform neurofibroma: distinction from a large congenital melanocytic nevus. J Am Acad Dermatol. 2007;56:862–8. doi:10.1016/j.jaad.2006.11.022.

    PubMed  Google Scholar 

  132. Schallreuter KU, Kothari S, Chavan B, Spencer JD. Regulation of melanogenesis – controversies and new concepts. Exp Dermatol. 2008;17:395–404. doi:10.1111/j.1600-0625.2007.00675.x.

    PubMed  CAS  Google Scholar 

  133. Schlingemann RO, Rietveld FJ, de Waal RM, et al. Expression of the high molecular weight melanoma-associated antigen by pericytes during angiogenesis in tumors and in healing wounds. Am J Pathol. 1990;136:1393–405.

    PubMed  CAS  Google Scholar 

  134. Schmitt FC, Bittencourt A, Mendonca N, Dorea M. Rhabdomyosarcoma in a congenital pigmented nevus. Pediatr Pathol. 1992;12:93–8.

    PubMed  CAS  Google Scholar 

  135. Sensi M, Nicolini G, Petti C, et al. Mutually exclusive NRASQ61R and BRAFV600E mutations at the single-cell level in the same human melanoma. Oncogene. 2006;25:3357–64. doi:10.1038/sj.onc.1209379.

    PubMed  CAS  Google Scholar 

  136. Shah KN. The risk of melanoma and neurocutaneous melanosis associated with congenital melanocytic nevi. Semin Cutan Med Surg. 2010;29:159–64. doi:10.1016/j.sder.2010.06.007.

    PubMed  CAS  Google Scholar 

  137. Shin MK, Levorse JM, Ingram RS, Tilghman SM. The temporal requirement for endothelin receptor-B signalling during neural crest development. Nature. 1999;402:496–501.

    PubMed  CAS  Google Scholar 

  138. Shinno K, Nagahiro S, Uno M, et al. Neurocutaneous melanosis associated with malignant leptomeningeal melanoma in an adult: clinical significance of 5-S-cysteinyldopa in the cerebrospinal fluid – case report. Neurol Med Chir. 2003;43:619–25.

    Google Scholar 

  139. Sieber-Blum M, Grim M, Hu YF, Szeder V. Pluripotent neural crest stem cells in the adult hair follicle. Dev Dyn. 2004;231:258–69.

    PubMed  CAS  Google Scholar 

  140. Slutsky JB, Barr JM, Femia AN, Marghoob AA. Large congenital melanocytic nevi: associated risks and management considerations. Semin Cutan Med Surg. 2010;29:79–84. doi:10.1016/j.sder.2010.04.007.

    PubMed  CAS  Google Scholar 

  141. Steel KP, Davidson DR, Jackson IJ. TRP-2/DT, a new early melanoblast marker, shows that steel growth factor (c-kit ligand) is a survival factor. Development. 1992;115:1111–9.

    PubMed  CAS  Google Scholar 

  142. Sviderskaya EV, Easty DJ, Lawrence MA, et al. Functional neurons and melanocytes induced from immortal lines of postnatal neural crest-like stem cells. FASEB J. 2009;23:3179–92. doi:10.1096/fj.08-123596.

    PubMed  CAS  Google Scholar 

  143. Szeder V, Grim M, Halata Z, Sieber-Blum M. Neural crest origin of mammalian Merkel cells. Dev Biol. 2003;253:258–63.

    PubMed  CAS  Google Scholar 

  144. Takayama H, La Rochelle WJ, Anver M, et al. Scatter factor/hepatocyte growth factor as a regulator of skeletal muscle and neural crest development. Proc Natl Acad Sci USA. 1996;93:5866–71.

    PubMed  CAS  Google Scholar 

  145. Thakur MS, Parmar SNS, Pillai PVA (2006) Studies on growth performance in Kadaknath breed of poultry. Livestock Research for Rural Development 18:article #116.

    Google Scholar 

  146. Thomas AJ, Erickson CA. The making of a melanocyte: the specification of melanoblasts from the neural crest. Pigment Cell Melanoma Res. 2008;21:598–610. doi:10.1111/j.1755-148X.2008.00506.x.

    PubMed  CAS  Google Scholar 

  147. Thomas S, Thomas M, Wincker P, et al. Human neural crest cells display molecular and phenotypic hallmarks of stem cells. Hum Mol Genet. 2008;17:3411–25. doi:10.1093/hmg/ddn235.

    PubMed  CAS  Google Scholar 

  148. Thompson A, Kent G. Adjusting to disfigurement: processes involved in dealing with being visibly different. Clin Psychol Rev. 2001;21:663–82.

    PubMed  CAS  Google Scholar 

  149. Tokuda Y, Saida T, Murata H, et al. Histogenesis of congenital and acquired melanocytic nevi based on histological study of lesion size and thickness. J Dermatol. 2010;37:1011–8.

    PubMed  Google Scholar 

  150. Trentin A, Glavieux-Pardanaud C, Le Douarin NM, Dupin E. Self-renewal capacity is a widespread property of various types of neural crest precursor cells. Proc Natl Acad Sci USA. 2004;101:4495–500. doi:10.1073/pnas.0400629101.

    PubMed  CAS  Google Scholar 

  151. Trufant JW, Brenn T, Fletcher CDM, et al. Melanotic schwannoma arising in association with nevus of Ota: 2 cases suggesting a shared mechanism. Am J Dermatopathol. 2009;31:808–13.

    PubMed  Google Scholar 

  152. Valverde P, Healy E, Sikkink S, et al. The Asp84Glu variant of the melanocortin 1 receptor (MC1R) is associated with melanoma. Hum Mol Genet. 1996;5:1663–6.

    PubMed  CAS  Google Scholar 

  153. Van Raamsdonk CD, Fitch KR, Fuchs H, et al. Effects of G-protein mutations on skin color. Nat Genet. 2004;36:961–8.

    PubMed  Google Scholar 

  154. Van Raamsdonk CD, Bezrookove V, Green G, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457:599–602.

    PubMed  Google Scholar 

  155. Van Raamsdonk CD, Griewank KG, Crosby MB, et al. Mutations in GNA11 in uveal melanoma. N Engl J Med. 2010;363:2191–9. doi:10.1056/NEJMoa1000584.

    PubMed  Google Scholar 

  156. Walbert T, Sloan AE, Cohen ML, Koubeissi MZ. Symptomatic neurocutaneous melanosis and Dandy-Walker malformation in an adult. J Clin Oncol. 2009;27:2886–7. doi:10.1200/JCO.2008.21.5830.

    PubMed  Google Scholar 

  157. Watanabe A, Takeda K, Ploplis B, Tachibana M. Epistatic relationship between Waardenburg ­syndrome genes MITF and PAX3. Nat Genet. 1998;18:283–6.

    PubMed  CAS  Google Scholar 

  158. Wehrle-Haller B. The role of Kit-ligand in melanocyte development and epidermal homeostasis. Pigment Cell Res. 2003;16:287–96.

    PubMed  CAS  Google Scholar 

  159. Weiner L, Han R, Scicchitano BM, et al. Dedicated epithelial recipient cells determine pigmentation patterns. Cell. 2007;130:932–42.

    PubMed  CAS  Google Scholar 

  160. Wieselthaler NA, van Toorn R, Wilmshurst JM. Giant congenital melanocytic nevi in a patient with brain structural malformations and multiple lipomatosis. J Child Neurol. 2002;17:289–91.

    PubMed  Google Scholar 

  161. Wilkie AL, Jordan SA, Jackson IJ. Neural crest progenitors of the melanocyte lineage: coat colour patterns revisited. Development. 2002;129:3349.

    PubMed  CAS  Google Scholar 

  162. Won JH, Ahn SK, Lee SH, et al. Congenital giant pigmented nevus associated with angiolipoma. J Dermatol. 1993;20:381–3.

    PubMed  CAS  Google Scholar 

  163. Wu H, Goel V, Haluska FG. PTEN signaling pathways in melanoma. Oncogene. 2003;22:3113–22. doi:10.1038/sj.onc.1206451.

    PubMed  CAS  Google Scholar 

  164. Wu J, Williams JP, Rizvi TA, et al. Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell. 2008;13:105–16.

    PubMed  CAS  Google Scholar 

  165. Yajima I, Larue L. The location of heart melanocytes is specified and the level of pigmentation in the heart may correlate with coat color. Pigment Cell Melanoma Res. 2008;21:471–6. doi:10.1111/j.1755-148X.2008.00483.x.

    PubMed  Google Scholar 

  166. Ye BS, Cho Y-J, Jang SH, et al. Neurocutaneous melanosis presenting as chronic partial epilepsy. J Clin Neurol (Seoul, Korea). 2008;4:134–7.

    Google Scholar 

  167. Zúñiga S, Las Heras J, Benveniste S. Rhabdomyosarcoma arising in a congenital giant nevus associated with neurocutaneous melanosis in a neonate. J Pediatr Surg. 1987;22:1036–8.

    PubMed  Google Scholar 

Download references

Acknowledgements

MB and HCE were supported in part by funding from Nevus Outreach, Inc. The authors thank Dr. Valérie Matagne for constructive criticism of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather C. Etchevers Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer- Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reyes-Múgica, M., Beckwith, M., Etchevers, H.C. (2012). Etiology of Congenital Melanocytic Nevi and Related Conditions. In: Marghoob, A. (eds) Nevogenesis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28397-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28397-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28396-3

  • Online ISBN: 978-3-642-28397-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics