Advertisement

Nevogenesis: Changing Theories

  • Mark E. Burnett
  • Ashfaq A. MarghoobEmail author
  • Alon Scope
Chapter

Abstract

The life cycle of most individual melanocytic nevi is shorter than the lifetime of the individual harboring them [1–3]. We are born with few or no nevi and enter old age with few or no nevi, while nevi development occurs between these two time periods (Fig. 1.1) [2–8]. This conception of nevogenesis appears relatively straightforward from a cross-sectional perspective, when only total nevus counts are considered.

Keywords

Telomere Length BRAF Mutation Melanocytic Nevus Reticular Pattern Reflectance Confocal Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Funding Source

None.

Conflict of Interest

None.

References

  1. 1.
    Pratt AG. Birthmarks in infants. AMA Arch Derm Syphilol. 1953;67:302–5.PubMedGoogle Scholar
  2. 2.
    Stegmaier OC. Natural regression of the melanocytic nevus. J Invest Dermatol. 1959;32:413–21.PubMedGoogle Scholar
  3. 3.
    Bataille V, Grulich A, Sasieni P, Swerdlow A, Newton Bishop J, McCarthy W. The association between naevi and melanoma in populations with different levels of sun exposure: a joint case-control study of melanoma in the UK and Australia. Br J Cancer. 1998;77:505–10.PubMedGoogle Scholar
  4. 4.
    Nicholls EM. Development and elimination of pigmented moles, and the anatomical distribution of primary malignant melanoma. Cancer. 1973;32:191–5.PubMedGoogle Scholar
  5. 5.
    Cooke KR, Spears GF, Skegg DC. Frequency of moles in a defined population. J Epidemiol Community Health. 1985;39:48–52.PubMedGoogle Scholar
  6. 6.
    MacKie RM, English J, Aitchison TC, Fitzsimons CP, Wilson P. The number and distribution of benign pigmented moles (melanocytic naevi) in a healthy British population. Br J Dermatol. 1985;113:167–74.PubMedGoogle Scholar
  7. 7.
    Halpern AC, Guerry Dt, Elder DE, Trock B, Synnestvedt M, Humphreys T. Natural history of dysplastic nevi. J Am Acad Dermatol. 1993;29:51–7.PubMedGoogle Scholar
  8. 8.
    Grichnik J, Rhodes A, Sober A. Benign hyperplasias and neoplasias of melanocytes. New York: McGraw Hill Co Inc.; 2003.Google Scholar
  9. 9.
    Scope A, Dusza SW, Marghoob AA, Satagopan JM, Braga Casagrande Tavoloni J, Psaty EL. Clinical and dermoscopic stability and volatility of melanocytic nevi in a population-based cohort of children in Framingham school system. J Invest Dermatol. 2011;131(8):1615–21.PubMedGoogle Scholar
  10. 10.
    Kittler H, Seltenheim M, Dawid M, Pehamberger H, Wolff K, Binder M. Frequency and characteristics of enlarging common melanocytic nevi. Arch Dermatol. 2000;136:316–20.PubMedGoogle Scholar
  11. 11.
    Terushkin V, Scope A, Halpern AC, Marghoob AA. Pathways to involution of nevi: insights from dermoscopic follow-up. Arch Dermatol. 2010;146:459–60.PubMedGoogle Scholar
  12. 12.
    Zalaudek I, Leinweber B, Hofmann-Wellenhof R, Scope A, Marghoob AA, Ferrara G, et al. The epidermal and dermal origin of melanocytic tumors: theoretical considerations based on epidemiologic, clinical, and histopathologic findings. Am J Dermatopathol. 2008;30:403–6.PubMedGoogle Scholar
  13. 13.
    Scope A, Marghoob AA, Chen CS, Lieb JA, Weinstock MA, Halpern AC. Dermoscopic patterns and subclinical melanocytic nests in normal-appearing skin. Br J Dermatol. 2009;160:1318–21.PubMedGoogle Scholar
  14. 14.
    Unna PG. Naevi und naevocarcinome. Berl Klin Wochenschr. 1893;30:14–6.Google Scholar
  15. 15.
    Cramer SF. The histogenesis of acquired melanocytic nevi. Based on a new concept of melanocytic diff­erentiation. Am J Dermatopathol. 1984;6(Suppl):289–98.PubMedGoogle Scholar
  16. 16.
    Scope A, Marghoob AA, Dusza SW, Satagopan JM, Agero AL, Benvenuto-Andrade C, et al. Dermoscopic patterns of naevi in fifth grade children of the Framingham school system. Br J Dermatol. 2008;158:1041–9.PubMedGoogle Scholar
  17. 17.
    Pellacani G, Scope A, Ferrari B, Pupelli G, Bassoli S, Longo C, et al. New insights into nevogenesis: in vivo characterization and follow-up of melanocytic nevi by reflectance confocal microscopy. J Am Acad Dermatol. 2009;61:1001–13.PubMedGoogle Scholar
  18. 18.
    Grichnik JM. Melanoma, nevogenesis, and stem cell biology. J Invest Dermatol. 2008;128:2365–80.PubMedGoogle Scholar
  19. 19.
    Lipoff JB, Scope A, Dusza SW, Marghoob AA, Oliveria SA, Halpern AC. Complex dermoscopic pattern: a potential risk marker for melanoma. Br J Dermatol. 2008;158:821–4.PubMedGoogle Scholar
  20. 20.
    Winkelmann RK, Rocha G. The dermal nevus and statistics. An evaluation of 1,200 pigmented lesions. Arch Dermatol. 1962;86:310–5.PubMedGoogle Scholar
  21. 21.
    Habif TP, editor. Clinical dermatology: a color guide to diagnosis and therapy. Philadelphia: Mosby; 2009.Google Scholar
  22. 22.
    Elder DE, Elenitsas R, Murphy GF, Xu X. Benign pigmented lesion and malignant melanoma. In: Lever’s histopathology of the skin. Philadelphia: Lippincott Williams & Wilkins; 2004.Google Scholar
  23. 23.
    MacKie RM. Disorders of the cutaneous melanocyte. In: Rook’s textbook of dermatology. Malden: Blackwell; 2004.Google Scholar
  24. 24.
    Masson P. My conception of cellular nevi. Cancer. 1951;4:9–38.PubMedGoogle Scholar
  25. 25.
    Adameyko I, Lallemend F, Aquino JB, Pereira JA, Topilko P, Muller T, et al. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell. 2009;139:366–79.PubMedGoogle Scholar
  26. 26.
    Worret WI, Burgdorf WH. Which direction do nevus cells move? Abtropfung reexamined. Am J Dermatopathol. 1998;20:135–9.PubMedGoogle Scholar
  27. 27.
    Westhafer J, Gildea J, Klepeiss S, Clarke L, Helm K. Age distribution of biopsied junctional nevi. J Am Acad Dermatol. 2007;56:825–7.PubMedGoogle Scholar
  28. 28.
    Krischer J, Skaria A, Guillod J, Lemonnier E, Salomon D, Braun R, et al. Epiluminescent light microscopy of melanocytic lesions after dermoepidermal split. Dermatology. 1997;195:108–11.PubMedGoogle Scholar
  29. 29.
    Massi D, De Giorgi V, Soyer HP. Histopathologic correlates of dermoscopic criteria. Dermatol Clin. 2001;19:259–68. vii.PubMedGoogle Scholar
  30. 30.
    Soyer HP, Kenet RO, Wolf IH, Kenet BJ, Cerroni L. Clinicopathological correlation of pigmented skin lesions using dermoscopy. Eur J Dermatol. 2000;10:22–8.PubMedGoogle Scholar
  31. 31.
    Yadav S, Vossaert KA, Kopf AW, Silverman M, Grin-Jorgensen C. Histopathologic correlates of structures seen on dermoscopy (epiluminescence microscopy). Am J Dermatopathol. 1993;15:297–305.PubMedGoogle Scholar
  32. 32.
    Bauer J, Blum A, editors. Dermoscopic features of common melanocytic nevi of the junctional, compound and dermal type. London and New York: Taylor & Francis; 2005.Google Scholar
  33. 33.
    Marghoob AA, Braun R, Kopf AW, editors. Atlas of dermoscopy. Abingdon, Oxon: Taylor & Francis; 2004.Google Scholar
  34. 34.
    Zalaudek I, Grinschgl S, Argenziano G, Marghoob AA, Blum A, Richtig E, et al. Age-related prevalence of dermoscopy patterns in acquired melanocytic naevi. Br J Dermatol. 2006;154:299–304.PubMedGoogle Scholar
  35. 35.
    Oztas P, Ilhan MN, Polat M, Alli N. Clinical and dermoscopic characteristics of melanocytic nevi in Turkish children and their relationship with environmental and constitutional factors. Dermatol Surg. 2007;33:607–13.PubMedGoogle Scholar
  36. 36.
    Aguilera P, Puig S, Guilabert A, Julia M, Romero D, Vicente A, et al. Prevalence study of nevi in children from Barcelona. Dermoscopy, constitutional and environmental factors. Dermatology. 2009;218:203–14.PubMedGoogle Scholar
  37. 37.
    Changchien L, Dusza SW, Agero AL, Korzenko AJ, Braun RP, Sachs D, et al. Age- and site-specific variation in the dermoscopic patterns of congenital melanocytic nevi: an aid to accurate classification and assessment of melanocytic nevi. Arch Dermatol. 2007;143:1007–14.PubMedGoogle Scholar
  38. 38.
    Seidenari S, Pellacani G, Martella A, Giusti F, Argenziano G, Buccini P, et al. Instrument-, age- and site-dependent variations of dermoscopic patterns of congenital melanocytic naevi: a multicentre study. Br J Dermatol. 2006;155:56–61.PubMedGoogle Scholar
  39. 39.
    Rajadhyaksha M, Gonzalez S, Zavislan JM, Anderson RR, Webb RH. In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. J Invest Dermatol. 1999;113:293–303.PubMedGoogle Scholar
  40. 40.
    Gontier E, Cario-Andre M, Lepreux S, Vergnes P, Bizik J, Surleve-Bazeille JE, et al. Dermal nevus cells from congenital nevi cannot penetrate the dermis in skin reconstructs. Pigment Cell Res. 2002;15:41–8.PubMedGoogle Scholar
  41. 41.
    Gontier E, Cario-Andre M, Vergnes P, Bizik J, Surleve-Bazeille JE, Taieb A. The ‘Abtropfung phenomenon’ revisited: dermal nevus cells from congenital nevi cannot activate matrix metalloproteinase 2 (MMP-2). Pigment Cell Res. 2003;16:366–73.PubMedGoogle Scholar
  42. 42.
    Chudnovsky Y, Adams AE, Robbins PB, Lin Q, Khavari PA. Use of human tissue to assess the oncogenic activity of melanoma-associated mutations. Nat Genet. 2005;37:745–9.PubMedGoogle Scholar
  43. 43.
    Alexeev V, Yoon K. Distinctive role of the cKit receptor tyrosine kinase signaling in mammalian melanocytes. J Invest Dermatol. 2006;126:1102–10.PubMedGoogle Scholar
  44. 44.
    Li L, Fukunaga-Kalabis M, Yu H, Xu X, Kong J, Lee JT, et al. Human dermal stem cells differentiate into functional epidermal melanocytes. J Cell Sci. 2010;123:853–60.PubMedGoogle Scholar
  45. 45.
    Andreola S, Clemente C. Nevus cells in axillary lymph nodes from radical mastectomy specimens. Pathol Res Pract. 1985;179:616–8.PubMedGoogle Scholar
  46. 46.
    Bautista NC, Cohen S, Anders KH. Benign melanocytic nevus cells in axillary lymph nodes. A prospective incidence and immunohistochemical study with literature review. Am J Clin Pathol. 1994;102:102–8.PubMedGoogle Scholar
  47. 47.
    Carson KF, Wen DR, Li PX, Lana AM, Bailly C, Morton DL, et al. Nodal nevi and cutaneous melanomas. Am J Surg Pathol. 1996;20:834–40.PubMedGoogle Scholar
  48. 48.
    Fontaine D, Parkhill W, Greer W, Walsh N. Nevus cells in lymph nodes: an association with congenital cutaneous nevi. Am J Dermatopathol. 2002;24:1–5.PubMedGoogle Scholar
  49. 49.
    Biddle DA, Evans HL, Kemp BL, El-Naggar AK, Harvell JD, White WL, et al. Intraparenchymal nevus cell aggregates in lymph nodes: a possible diagnostic pitfall with malignant melanoma and carcinoma. Am J Surg Pathol. 2003;27:673–81.PubMedGoogle Scholar
  50. 50.
    Holt JB, Sangueza OP, Levine EA, Shen P, Bergman S, Geisinger KR, et al. Nodal melanocytic nevi in sentinel lymph nodes. Correlation with melanoma-associated cutaneous nevi. Am J Clin Pathol. 2004;121:58–63.PubMedGoogle Scholar
  51. 51.
    Dadzie OE, Goerig R, Bhawan J. Incidental microscopic foci of nevic aggregates in skin. Am J Dermatopathol. 2008;30:45–50.PubMedGoogle Scholar
  52. 52.
    Zalaudek I, Hofmann-Wellenhof R, Kittler H, Argenziano G, Ferrara G, Petrillo L, et al. A dual concept of nevogenesis: theoretical considerations based on dermoscopic features of melanocytic nevi. J Dtsch Dermatol Ges. 2007;5:985–92.PubMedGoogle Scholar
  53. 53.
    Zalaudek I, Hofmann-Wellenhof R, Soyer HP, Ferrara G, Argenziano G. Naevogenesis: new thoughts based on dermoscopy. Br J Dermatol. 2006;154:793–4.PubMedGoogle Scholar
  54. 54.
    Cribier BJ, Santinelli F, Grosshans E. Lack of clinical-pathological correlation in the diagnosis of congenital naevi. Br J Dermatol. 1999;141:1004–9.PubMedGoogle Scholar
  55. 55.
    Stenn KS, Arons M, Hurwitz S. Patterns of congenital nevocellular nevi. A histologic study of thirty-eight cases. J Am Acad Dermatol. 1983;9:388–93.PubMedGoogle Scholar
  56. 56.
    Zitelli JA, Grant MG, Abell E, Boyd JB. Histologic patterns of congenital nevocytic nevi and implications for treatment. J Am Acad Dermatol. 1984;11:402–9.PubMedGoogle Scholar
  57. 57.
    Clemmensen OJ, Kroon S. The histology of “congenital features” in early acquired melanocytic nevi. J Am Acad Dermatol. 1988;19:742–6.PubMedGoogle Scholar
  58. 58.
    Everett MA. Histopathology of congenital pigmented nevi. Am J Dermatopathol. 1989;11:11–2.PubMedGoogle Scholar
  59. 59.
    Krengel S. Nevogenesis – new thoughts regarding a classical problem. Am J Dermatopathol. 2005;27: 456–65.PubMedGoogle Scholar
  60. 60.
    Ichii-Nakato N, Takata M, Takayanagi S, Takashima S, Lin J, Murata H, et al. High frequency of BRAFV600E mutation in acquired nevi and small congenital nevi, but low frequency of mutation in medium-sized congenital nevi. J Invest Dermatol. 2006;126:2111–8.PubMedGoogle Scholar
  61. 61.
    Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O’Brien JM, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457:599–602.PubMedGoogle Scholar
  62. 62.
    Bastian BC, LeBoit PE, Pinkel D. Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. Am J Pathol. 2000;157:967–72.PubMedGoogle Scholar
  63. 63.
    Bauer J, Curtin JA, Pinkel D, Bastian BC. Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol. 2007;127:179–82.PubMedGoogle Scholar
  64. 64.
    Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, et al. High frequency of BRAF mutations in nevi. Nat Genet. 2003;33:19–20.PubMedGoogle Scholar
  65. 65.
    Uribe P, Wistuba II, Gonzalez S. BRAF mutation: a frequent event in benign, atypical, and malignant melanocytic lesions of the skin. Am J Dermatopathol. 2003;25:365–70.PubMedGoogle Scholar
  66. 66.
    Dong J, Phelps RG, Qiao R, Yao S, Benard O, Ronai Z, et al. BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res. 2003;63:3883–5.PubMedGoogle Scholar
  67. 67.
    Kumar R, Angelini S, Snellman E, Hemminki K. BRAF mutations are common somatic events in melanocytic nevi. J Invest Dermatol. 2004;122:342–8.PubMedGoogle Scholar
  68. 68.
    Zalaudek I, Guelly C, Pellacani G, Hofmann-Wellenhof R, Trajanoski S, Kittler H, et al. The dermoscopical and histopathological patterns of nevi correlate with the frequency of BRAF mutations. J Invest Dermatol. 2011;131:542–5.PubMedGoogle Scholar
  69. 69.
    Loewe R, Kittler H, Fischer G, Fae I, Wolff K, Petzelbauer P. BRAF kinase gene V599E mutation in growing melanocytic lesions. J Invest Dermatol. 2004;123:733–6.PubMedGoogle Scholar
  70. 70.
    Fuller SR, Bowen GM, Tanner B, Florell SR, Grossman D. Digital dermoscopic monitoring of atypical nevi in patients at risk for melanoma. Dermatol Surg. 2007;33:1198–206. discussion 205–6.PubMedGoogle Scholar
  71. 71.
    Robinson JK, Nickoloff BJ. Digital epiluminescence microscopy monitoring of high-risk patients. Arch Dermatol. 2004;140:49–56.PubMedGoogle Scholar
  72. 72.
    Bauer J, Blum A, Strohhacker U, Garbe C. Surveillance of patients at high risk for cutaneous malignant melanoma using digital dermoscopy. Br J Dermatol. 2005;152:87–92.PubMedGoogle Scholar
  73. 73.
    Haenssle HA, Vente C, Bertsch HP, Rupprecht R, Abuzahra F, Junghans V, et al. Results of a surveillance programme for patients at high risk of malignant melanoma using digital and conventional dermoscopy. Eur J Cancer Prev. 2004;13:133–8.PubMedGoogle Scholar
  74. 74.
    Rhodes AR, Albert LS, Weinstock MA. Congenital nevomelanocytic nevi: proportionate area expansion during infancy and early childhood. J Am Acad Dermatol. 1996;34:51–62.PubMedGoogle Scholar
  75. 75.
    Argenziano G, Soyer HP, Chimenti S, Talamini R, Corona R, Sera F, et al. Dermoscopy of pigmented skin lesions: results of a consensus meeting via the Internet. J Am Acad Dermatol. 2003;48:679–93.PubMedGoogle Scholar
  76. 76.
    Pizzichetta MA, Argenziano G, Grandi G, de Giacomi C, Trevisan G, Soyer HP. Morphologic changes of a pigmented Spitz nevus assessed by dermoscopy. J Am Acad Dermatol. 2002;47:137–9.PubMedGoogle Scholar
  77. 77.
    Piccolo D, Ferrari A, Peris K. Sequential dermoscopic evolution of pigmented Spitz nevus in childhood. J Am Acad Dermatol. 2003;49:556–8.PubMedGoogle Scholar
  78. 78.
    Mathon NF, Lloyd AC. Cell senescence and cancer. Nat Rev Cancer. 2001;1:203–13.PubMedGoogle Scholar
  79. 79.
    Bandyopadhyay D, Timchenko N, Suwa T, Hornsby PJ, Campisi J, Medrano EE. The human melanocyte: a model system to study the complexity of cellular aging and transformation in non-fibroblastic cells. Exp Gerontol. 2001;36:1265–75.PubMedGoogle Scholar
  80. 80.
    Bataille V, Kato BS, Falchi M, Gardner J, Kimura M, Lens M, et al. Nevus size and number are associated with telomere length and represent potential markers of a decreased senescence in vivo. Cancer Epidemiol Biomarkers Prev. 2007;16:1499–502.PubMedGoogle Scholar
  81. 81.
    Aviv A, Valdes AM, Spector TD. Human telomere biology: pitfalls of moving from the laboratory to epidemiology. Int J Epidemiol. 2006;35:1424–9.PubMedGoogle Scholar
  82. 82.
    Butler MG, Tilburt J, DeVries A, Muralidhar B, Aue G, Hedges L, et al. Comparison of chromosome telomere integrity in multiple tissues from subjects at different ages. Cancer Genet Cytogenet. 1998;105:138–44.PubMedGoogle Scholar
  83. 83.
    Friedrich U, Griese E, Schwab M, Fritz P, Thon K, Klotz U. Telomere length in different tissues of elderly patients. Mech Ageing Dev. 2000;119:89–99.PubMedGoogle Scholar
  84. 84.
    Okuda K, Bardeguez A, Gardner JP, Rodriguez P, Ganesh V, Kimura M, et al. Telomere length in the newborn. Pediatr Res. 2002;52:377–81.PubMedGoogle Scholar
  85. 85.
    Braig M, Schmitt CA. Oncogene-induced senescence: putting the brakes on tumor development. Cancer Res. 2006;66:2881–4.PubMedGoogle Scholar
  86. 86.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.PubMedGoogle Scholar
  87. 87.
    Peyssonnaux C, Eychene A. The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell. 2001;93:53–62.PubMedGoogle Scholar
  88. 88.
    Zebisch A, Troppmair J. Back to the roots: the remarkable RAF oncogene story. Cell Mol Life Sci. 2006;63:1314–30.PubMedGoogle Scholar
  89. 89.
    Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436:720–4.PubMedGoogle Scholar
  90. 90.
    Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA, et al. Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer. 2006;95:496–505.PubMedGoogle Scholar
  91. 91.
    Houben R, Ortmann S, Drasche A, Troppmair J, Herold MJ, Becker JC. Proliferation arrest in B-Raf mutant melanoma cell lines upon MAPK pathway activation. J Invest Dermatol. 2009;129:406–14.PubMedGoogle Scholar
  92. 92.
    Scurr LL, Pupo GM, Becker TM, Lai K, Schrama D, Haferkamp S, et al. IGFBP7 is not required for B-RAF-induced melanocyte senescence. Cell. 2010;141:717–27.PubMedGoogle Scholar
  93. 93.
    Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120:513–22.PubMedGoogle Scholar
  94. 94.
    Denoyelle C, Abou-Rjaily G, Bezrookove V, Verhaegen M, Johnson TM, Fullen DR, et al. Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat Cell Biol. 2006;8:1053–63.PubMedGoogle Scholar
  95. 95.
    Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8:729–40.PubMedGoogle Scholar
  96. 96.
    Zeff RA, Freitag A, Grin CM, Grant-Kels JM. The immune response in halo nevi. J Am Acad Dermatol. 1997;37:620–4.PubMedGoogle Scholar
  97. 97.
    Kolm I, Di Stefani A, Hofmann-Wellenhof R, Fink-Puches R, Wolf IH, Richtig E, et al. Dermoscopy patterns of halo nevi. Arch Dermatol. 2006;142:1627–32.PubMedGoogle Scholar
  98. 98.
    Massi D, De Giorgi V, Carli P, Santucci M. Diagnostic significance of the blue hue in dermoscopy of melanocytic lesions: a dermoscopic-pathologic study. Am J Dermatopathol. 2001;23:463–9.PubMedGoogle Scholar
  99. 99.
    Zalaudek I, Argenziano G, Ferrara G, Soyer HP, Corona R, Sera F, et al. Clinically equivocal melanocytic skin lesions with features of regression: a dermoscopic-pathological study. Br J Dermatol. 2004;150:64–71.PubMedGoogle Scholar
  100. 100.
    Berman B, Shaieb AM, France DS, Altchek DD. Halo giant congenital melanocytic nevus: in vitro immunologic studies. J Am Acad Dermatol. 1988;19:954–60.PubMedGoogle Scholar
  101. 101.
    Tokura Y, Yamanaka K, Wakita H, Kurokawa S, Horiguchi D, Usui A, et al. Halo congenital nevus undergoing spontaneous regression. Involvement of T-cell immunity in involution and presence of circulating anti-nevus cell IgM antibodies. Arch Dermatol. 1994;130:1036–41.PubMedGoogle Scholar
  102. 102.
    Brownstein MH, Kazam BB, Hashimoto K. Halo congenital nevus. Arch Dermatol. 1977;113:1572–5.PubMedGoogle Scholar
  103. 103.
    Berger RS, Voorhees JJ. Multiple congenital giant nevocellular nevi with halos. A clinical and electron microscopic study. Arch Dermatol. 1971;104:515–21.PubMedGoogle Scholar
  104. 104.
    Kantor GR, Wheeland RG. Transepidermal elimination of nevus cells. A possible mechanism of nevus involution. Arch Dermatol. 1987;123:1371–4.PubMedGoogle Scholar
  105. 105.
    Kageshita T, Inoue Y, Ono T. Spontaneous regression of congenital melanocytic nevi without evidence of the halo phenomenon. Dermatology. 2003;207:193–5.PubMedGoogle Scholar

Copyright information

© Springer- Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mark E. Burnett
    • 1
  • Ashfaq A. Marghoob
    • 2
    Email author
  • Alon Scope
    • 1
    • 3
    • 4
  1. 1.Dermatology ServiceMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.Memorial Sloan-Kettering Skin Cancer CenterNew YorkUSA
  3. 3.Department of DermatologySheba Medical CenterRamat GanIsrael
  4. 4.Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations