Skip to main content

Nevogenesis: Changing Theories

  • Chapter
  • First Online:
Nevogenesis

Abstract

The life cycle of most individual melanocytic nevi is shorter than the lifetime of the individual harboring them [1–3]. We are born with few or no nevi and enter old age with few or no nevi, while nevi development occurs between these two time periods (Fig. 1.1) [2–8]. This conception of nevogenesis appears relatively straightforward from a cross-sectional perspective, when only total nevus counts are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pratt AG. Birthmarks in infants. AMA Arch Derm Syphilol. 1953;67:302–5.

    PubMed  CAS  Google Scholar 

  2. Stegmaier OC. Natural regression of the melanocytic nevus. J Invest Dermatol. 1959;32:413–21.

    PubMed  CAS  Google Scholar 

  3. Bataille V, Grulich A, Sasieni P, Swerdlow A, Newton Bishop J, McCarthy W. The association between naevi and melanoma in populations with different levels of sun exposure: a joint case-control study of melanoma in the UK and Australia. Br J Cancer. 1998;77:505–10.

    PubMed  CAS  Google Scholar 

  4. Nicholls EM. Development and elimination of pigmented moles, and the anatomical distribution of primary malignant melanoma. Cancer. 1973;32:191–5.

    PubMed  CAS  Google Scholar 

  5. Cooke KR, Spears GF, Skegg DC. Frequency of moles in a defined population. J Epidemiol Community Health. 1985;39:48–52.

    PubMed  CAS  Google Scholar 

  6. MacKie RM, English J, Aitchison TC, Fitzsimons CP, Wilson P. The number and distribution of benign pigmented moles (melanocytic naevi) in a healthy British population. Br J Dermatol. 1985;113:167–74.

    PubMed  CAS  Google Scholar 

  7. Halpern AC, Guerry Dt, Elder DE, Trock B, Synnestvedt M, Humphreys T. Natural history of dysplastic nevi. J Am Acad Dermatol. 1993;29:51–7.

    PubMed  CAS  Google Scholar 

  8. Grichnik J, Rhodes A, Sober A. Benign hyperplasias and neoplasias of melanocytes. New York: McGraw Hill Co Inc.; 2003.

    Google Scholar 

  9. Scope A, Dusza SW, Marghoob AA, Satagopan JM, Braga Casagrande Tavoloni J, Psaty EL. Clinical and dermoscopic stability and volatility of melanocytic nevi in a population-based cohort of children in Framingham school system. J Invest Dermatol. 2011;131(8):1615–21.

    PubMed  CAS  Google Scholar 

  10. Kittler H, Seltenheim M, Dawid M, Pehamberger H, Wolff K, Binder M. Frequency and characteristics of enlarging common melanocytic nevi. Arch Dermatol. 2000;136:316–20.

    PubMed  CAS  Google Scholar 

  11. Terushkin V, Scope A, Halpern AC, Marghoob AA. Pathways to involution of nevi: insights from dermoscopic follow-up. Arch Dermatol. 2010;146:459–60.

    PubMed  Google Scholar 

  12. Zalaudek I, Leinweber B, Hofmann-Wellenhof R, Scope A, Marghoob AA, Ferrara G, et al. The epidermal and dermal origin of melanocytic tumors: theoretical considerations based on epidemiologic, clinical, and histopathologic findings. Am J Dermatopathol. 2008;30:403–6.

    PubMed  Google Scholar 

  13. Scope A, Marghoob AA, Chen CS, Lieb JA, Weinstock MA, Halpern AC. Dermoscopic patterns and subclinical melanocytic nests in normal-appearing skin. Br J Dermatol. 2009;160:1318–21.

    PubMed  CAS  Google Scholar 

  14. Unna PG. Naevi und naevocarcinome. Berl Klin Wochenschr. 1893;30:14–6.

    Google Scholar 

  15. Cramer SF. The histogenesis of acquired melanocytic nevi. Based on a new concept of melanocytic diff­erentiation. Am J Dermatopathol. 1984;6(Suppl):289–98.

    PubMed  Google Scholar 

  16. Scope A, Marghoob AA, Dusza SW, Satagopan JM, Agero AL, Benvenuto-Andrade C, et al. Dermoscopic patterns of naevi in fifth grade children of the Framingham school system. Br J Dermatol. 2008;158:1041–9.

    PubMed  CAS  Google Scholar 

  17. Pellacani G, Scope A, Ferrari B, Pupelli G, Bassoli S, Longo C, et al. New insights into nevogenesis: in vivo characterization and follow-up of melanocytic nevi by reflectance confocal microscopy. J Am Acad Dermatol. 2009;61:1001–13.

    PubMed  Google Scholar 

  18. Grichnik JM. Melanoma, nevogenesis, and stem cell biology. J Invest Dermatol. 2008;128:2365–80.

    PubMed  CAS  Google Scholar 

  19. Lipoff JB, Scope A, Dusza SW, Marghoob AA, Oliveria SA, Halpern AC. Complex dermoscopic pattern: a potential risk marker for melanoma. Br J Dermatol. 2008;158:821–4.

    PubMed  CAS  Google Scholar 

  20. Winkelmann RK, Rocha G. The dermal nevus and statistics. An evaluation of 1,200 pigmented lesions. Arch Dermatol. 1962;86:310–5.

    PubMed  CAS  Google Scholar 

  21. Habif TP, editor. Clinical dermatology: a color guide to diagnosis and therapy. Philadelphia: Mosby; 2009.

    Google Scholar 

  22. Elder DE, Elenitsas R, Murphy GF, Xu X. Benign pigmented lesion and malignant melanoma. In: Lever’s histopathology of the skin. Philadelphia: Lippincott Williams & Wilkins; 2004.

    Google Scholar 

  23. MacKie RM. Disorders of the cutaneous melanocyte. In: Rook’s textbook of dermatology. Malden: Blackwell; 2004.

    Google Scholar 

  24. Masson P. My conception of cellular nevi. Cancer. 1951;4:9–38.

    PubMed  CAS  Google Scholar 

  25. Adameyko I, Lallemend F, Aquino JB, Pereira JA, Topilko P, Muller T, et al. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell. 2009;139:366–79.

    PubMed  CAS  Google Scholar 

  26. Worret WI, Burgdorf WH. Which direction do nevus cells move? Abtropfung reexamined. Am J Dermatopathol. 1998;20:135–9.

    PubMed  CAS  Google Scholar 

  27. Westhafer J, Gildea J, Klepeiss S, Clarke L, Helm K. Age distribution of biopsied junctional nevi. J Am Acad Dermatol. 2007;56:825–7.

    PubMed  Google Scholar 

  28. Krischer J, Skaria A, Guillod J, Lemonnier E, Salomon D, Braun R, et al. Epiluminescent light microscopy of melanocytic lesions after dermoepidermal split. Dermatology. 1997;195:108–11.

    PubMed  CAS  Google Scholar 

  29. Massi D, De Giorgi V, Soyer HP. Histopathologic correlates of dermoscopic criteria. Dermatol Clin. 2001;19:259–68. vii.

    PubMed  CAS  Google Scholar 

  30. Soyer HP, Kenet RO, Wolf IH, Kenet BJ, Cerroni L. Clinicopathological correlation of pigmented skin lesions using dermoscopy. Eur J Dermatol. 2000;10:22–8.

    PubMed  CAS  Google Scholar 

  31. Yadav S, Vossaert KA, Kopf AW, Silverman M, Grin-Jorgensen C. Histopathologic correlates of structures seen on dermoscopy (epiluminescence microscopy). Am J Dermatopathol. 1993;15:297–305.

    PubMed  CAS  Google Scholar 

  32. Bauer J, Blum A, editors. Dermoscopic features of common melanocytic nevi of the junctional, compound and dermal type. London and New York: Taylor & Francis; 2005.

    Google Scholar 

  33. Marghoob AA, Braun R, Kopf AW, editors. Atlas of dermoscopy. Abingdon, Oxon: Taylor & Francis; 2004.

    Google Scholar 

  34. Zalaudek I, Grinschgl S, Argenziano G, Marghoob AA, Blum A, Richtig E, et al. Age-related prevalence of dermoscopy patterns in acquired melanocytic naevi. Br J Dermatol. 2006;154:299–304.

    PubMed  CAS  Google Scholar 

  35. Oztas P, Ilhan MN, Polat M, Alli N. Clinical and dermoscopic characteristics of melanocytic nevi in Turkish children and their relationship with environmental and constitutional factors. Dermatol Surg. 2007;33:607–13.

    PubMed  CAS  Google Scholar 

  36. Aguilera P, Puig S, Guilabert A, Julia M, Romero D, Vicente A, et al. Prevalence study of nevi in children from Barcelona. Dermoscopy, constitutional and environmental factors. Dermatology. 2009;218:203–14.

    PubMed  Google Scholar 

  37. Changchien L, Dusza SW, Agero AL, Korzenko AJ, Braun RP, Sachs D, et al. Age- and site-specific variation in the dermoscopic patterns of congenital melanocytic nevi: an aid to accurate classification and assessment of melanocytic nevi. Arch Dermatol. 2007;143:1007–14.

    PubMed  Google Scholar 

  38. Seidenari S, Pellacani G, Martella A, Giusti F, Argenziano G, Buccini P, et al. Instrument-, age- and site-dependent variations of dermoscopic patterns of congenital melanocytic naevi: a multicentre study. Br J Dermatol. 2006;155:56–61.

    PubMed  CAS  Google Scholar 

  39. Rajadhyaksha M, Gonzalez S, Zavislan JM, Anderson RR, Webb RH. In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. J Invest Dermatol. 1999;113:293–303.

    PubMed  CAS  Google Scholar 

  40. Gontier E, Cario-Andre M, Lepreux S, Vergnes P, Bizik J, Surleve-Bazeille JE, et al. Dermal nevus cells from congenital nevi cannot penetrate the dermis in skin reconstructs. Pigment Cell Res. 2002;15:41–8.

    PubMed  Google Scholar 

  41. Gontier E, Cario-Andre M, Vergnes P, Bizik J, Surleve-Bazeille JE, Taieb A. The ‘Abtropfung phenomenon’ revisited: dermal nevus cells from congenital nevi cannot activate matrix metalloproteinase 2 (MMP-2). Pigment Cell Res. 2003;16:366–73.

    PubMed  CAS  Google Scholar 

  42. Chudnovsky Y, Adams AE, Robbins PB, Lin Q, Khavari PA. Use of human tissue to assess the oncogenic activity of melanoma-associated mutations. Nat Genet. 2005;37:745–9.

    PubMed  CAS  Google Scholar 

  43. Alexeev V, Yoon K. Distinctive role of the cKit receptor tyrosine kinase signaling in mammalian melanocytes. J Invest Dermatol. 2006;126:1102–10.

    PubMed  CAS  Google Scholar 

  44. Li L, Fukunaga-Kalabis M, Yu H, Xu X, Kong J, Lee JT, et al. Human dermal stem cells differentiate into functional epidermal melanocytes. J Cell Sci. 2010;123:853–60.

    PubMed  CAS  Google Scholar 

  45. Andreola S, Clemente C. Nevus cells in axillary lymph nodes from radical mastectomy specimens. Pathol Res Pract. 1985;179:616–8.

    PubMed  CAS  Google Scholar 

  46. Bautista NC, Cohen S, Anders KH. Benign melanocytic nevus cells in axillary lymph nodes. A prospective incidence and immunohistochemical study with literature review. Am J Clin Pathol. 1994;102:102–8.

    PubMed  CAS  Google Scholar 

  47. Carson KF, Wen DR, Li PX, Lana AM, Bailly C, Morton DL, et al. Nodal nevi and cutaneous melanomas. Am J Surg Pathol. 1996;20:834–40.

    PubMed  CAS  Google Scholar 

  48. Fontaine D, Parkhill W, Greer W, Walsh N. Nevus cells in lymph nodes: an association with congenital cutaneous nevi. Am J Dermatopathol. 2002;24:1–5.

    PubMed  Google Scholar 

  49. Biddle DA, Evans HL, Kemp BL, El-Naggar AK, Harvell JD, White WL, et al. Intraparenchymal nevus cell aggregates in lymph nodes: a possible diagnostic pitfall with malignant melanoma and carcinoma. Am J Surg Pathol. 2003;27:673–81.

    PubMed  Google Scholar 

  50. Holt JB, Sangueza OP, Levine EA, Shen P, Bergman S, Geisinger KR, et al. Nodal melanocytic nevi in sentinel lymph nodes. Correlation with melanoma-associated cutaneous nevi. Am J Clin Pathol. 2004;121:58–63.

    PubMed  Google Scholar 

  51. Dadzie OE, Goerig R, Bhawan J. Incidental microscopic foci of nevic aggregates in skin. Am J Dermatopathol. 2008;30:45–50.

    PubMed  Google Scholar 

  52. Zalaudek I, Hofmann-Wellenhof R, Kittler H, Argenziano G, Ferrara G, Petrillo L, et al. A dual concept of nevogenesis: theoretical considerations based on dermoscopic features of melanocytic nevi. J Dtsch Dermatol Ges. 2007;5:985–92.

    PubMed  Google Scholar 

  53. Zalaudek I, Hofmann-Wellenhof R, Soyer HP, Ferrara G, Argenziano G. Naevogenesis: new thoughts based on dermoscopy. Br J Dermatol. 2006;154:793–4.

    PubMed  CAS  Google Scholar 

  54. Cribier BJ, Santinelli F, Grosshans E. Lack of clinical-pathological correlation in the diagnosis of congenital naevi. Br J Dermatol. 1999;141:1004–9.

    PubMed  CAS  Google Scholar 

  55. Stenn KS, Arons M, Hurwitz S. Patterns of congenital nevocellular nevi. A histologic study of thirty-eight cases. J Am Acad Dermatol. 1983;9:388–93.

    PubMed  CAS  Google Scholar 

  56. Zitelli JA, Grant MG, Abell E, Boyd JB. Histologic patterns of congenital nevocytic nevi and implications for treatment. J Am Acad Dermatol. 1984;11:402–9.

    PubMed  CAS  Google Scholar 

  57. Clemmensen OJ, Kroon S. The histology of “congenital features” in early acquired melanocytic nevi. J Am Acad Dermatol. 1988;19:742–6.

    PubMed  CAS  Google Scholar 

  58. Everett MA. Histopathology of congenital pigmented nevi. Am J Dermatopathol. 1989;11:11–2.

    PubMed  CAS  Google Scholar 

  59. Krengel S. Nevogenesis – new thoughts regarding a classical problem. Am J Dermatopathol. 2005;27: 456–65.

    PubMed  Google Scholar 

  60. Ichii-Nakato N, Takata M, Takayanagi S, Takashima S, Lin J, Murata H, et al. High frequency of BRAFV600E mutation in acquired nevi and small congenital nevi, but low frequency of mutation in medium-sized congenital nevi. J Invest Dermatol. 2006;126:2111–8.

    PubMed  CAS  Google Scholar 

  61. Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O’Brien JM, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457:599–602.

    PubMed  Google Scholar 

  62. Bastian BC, LeBoit PE, Pinkel D. Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. Am J Pathol. 2000;157:967–72.

    PubMed  CAS  Google Scholar 

  63. Bauer J, Curtin JA, Pinkel D, Bastian BC. Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol. 2007;127:179–82.

    PubMed  CAS  Google Scholar 

  64. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, et al. High frequency of BRAF mutations in nevi. Nat Genet. 2003;33:19–20.

    PubMed  CAS  Google Scholar 

  65. Uribe P, Wistuba II, Gonzalez S. BRAF mutation: a frequent event in benign, atypical, and malignant melanocytic lesions of the skin. Am J Dermatopathol. 2003;25:365–70.

    PubMed  Google Scholar 

  66. Dong J, Phelps RG, Qiao R, Yao S, Benard O, Ronai Z, et al. BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res. 2003;63:3883–5.

    PubMed  CAS  Google Scholar 

  67. Kumar R, Angelini S, Snellman E, Hemminki K. BRAF mutations are common somatic events in melanocytic nevi. J Invest Dermatol. 2004;122:342–8.

    PubMed  CAS  Google Scholar 

  68. Zalaudek I, Guelly C, Pellacani G, Hofmann-Wellenhof R, Trajanoski S, Kittler H, et al. The dermoscopical and histopathological patterns of nevi correlate with the frequency of BRAF mutations. J Invest Dermatol. 2011;131:542–5.

    PubMed  CAS  Google Scholar 

  69. Loewe R, Kittler H, Fischer G, Fae I, Wolff K, Petzelbauer P. BRAF kinase gene V599E mutation in growing melanocytic lesions. J Invest Dermatol. 2004;123:733–6.

    PubMed  CAS  Google Scholar 

  70. Fuller SR, Bowen GM, Tanner B, Florell SR, Grossman D. Digital dermoscopic monitoring of atypical nevi in patients at risk for melanoma. Dermatol Surg. 2007;33:1198–206. discussion 205–6.

    PubMed  CAS  Google Scholar 

  71. Robinson JK, Nickoloff BJ. Digital epiluminescence microscopy monitoring of high-risk patients. Arch Dermatol. 2004;140:49–56.

    PubMed  Google Scholar 

  72. Bauer J, Blum A, Strohhacker U, Garbe C. Surveillance of patients at high risk for cutaneous malignant melanoma using digital dermoscopy. Br J Dermatol. 2005;152:87–92.

    PubMed  CAS  Google Scholar 

  73. Haenssle HA, Vente C, Bertsch HP, Rupprecht R, Abuzahra F, Junghans V, et al. Results of a surveillance programme for patients at high risk of malignant melanoma using digital and conventional dermoscopy. Eur J Cancer Prev. 2004;13:133–8.

    PubMed  CAS  Google Scholar 

  74. Rhodes AR, Albert LS, Weinstock MA. Congenital nevomelanocytic nevi: proportionate area expansion during infancy and early childhood. J Am Acad Dermatol. 1996;34:51–62.

    PubMed  CAS  Google Scholar 

  75. Argenziano G, Soyer HP, Chimenti S, Talamini R, Corona R, Sera F, et al. Dermoscopy of pigmented skin lesions: results of a consensus meeting via the Internet. J Am Acad Dermatol. 2003;48:679–93.

    PubMed  Google Scholar 

  76. Pizzichetta MA, Argenziano G, Grandi G, de Giacomi C, Trevisan G, Soyer HP. Morphologic changes of a pigmented Spitz nevus assessed by dermoscopy. J Am Acad Dermatol. 2002;47:137–9.

    PubMed  Google Scholar 

  77. Piccolo D, Ferrari A, Peris K. Sequential dermoscopic evolution of pigmented Spitz nevus in childhood. J Am Acad Dermatol. 2003;49:556–8.

    PubMed  Google Scholar 

  78. Mathon NF, Lloyd AC. Cell senescence and cancer. Nat Rev Cancer. 2001;1:203–13.

    PubMed  CAS  Google Scholar 

  79. Bandyopadhyay D, Timchenko N, Suwa T, Hornsby PJ, Campisi J, Medrano EE. The human melanocyte: a model system to study the complexity of cellular aging and transformation in non-fibroblastic cells. Exp Gerontol. 2001;36:1265–75.

    PubMed  CAS  Google Scholar 

  80. Bataille V, Kato BS, Falchi M, Gardner J, Kimura M, Lens M, et al. Nevus size and number are associated with telomere length and represent potential markers of a decreased senescence in vivo. Cancer Epidemiol Biomarkers Prev. 2007;16:1499–502.

    PubMed  CAS  Google Scholar 

  81. Aviv A, Valdes AM, Spector TD. Human telomere biology: pitfalls of moving from the laboratory to epidemiology. Int J Epidemiol. 2006;35:1424–9.

    PubMed  Google Scholar 

  82. Butler MG, Tilburt J, DeVries A, Muralidhar B, Aue G, Hedges L, et al. Comparison of chromosome telomere integrity in multiple tissues from subjects at different ages. Cancer Genet Cytogenet. 1998;105:138–44.

    PubMed  CAS  Google Scholar 

  83. Friedrich U, Griese E, Schwab M, Fritz P, Thon K, Klotz U. Telomere length in different tissues of elderly patients. Mech Ageing Dev. 2000;119:89–99.

    PubMed  CAS  Google Scholar 

  84. Okuda K, Bardeguez A, Gardner JP, Rodriguez P, Ganesh V, Kimura M, et al. Telomere length in the newborn. Pediatr Res. 2002;52:377–81.

    PubMed  Google Scholar 

  85. Braig M, Schmitt CA. Oncogene-induced senescence: putting the brakes on tumor development. Cancer Res. 2006;66:2881–4.

    PubMed  CAS  Google Scholar 

  86. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    PubMed  CAS  Google Scholar 

  87. Peyssonnaux C, Eychene A. The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell. 2001;93:53–62.

    PubMed  CAS  Google Scholar 

  88. Zebisch A, Troppmair J. Back to the roots: the remarkable RAF oncogene story. Cell Mol Life Sci. 2006;63:1314–30.

    PubMed  CAS  Google Scholar 

  89. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436:720–4.

    PubMed  CAS  Google Scholar 

  90. Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA, et al. Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer. 2006;95:496–505.

    PubMed  CAS  Google Scholar 

  91. Houben R, Ortmann S, Drasche A, Troppmair J, Herold MJ, Becker JC. Proliferation arrest in B-Raf mutant melanoma cell lines upon MAPK pathway activation. J Invest Dermatol. 2009;129:406–14.

    PubMed  CAS  Google Scholar 

  92. Scurr LL, Pupo GM, Becker TM, Lai K, Schrama D, Haferkamp S, et al. IGFBP7 is not required for B-RAF-induced melanocyte senescence. Cell. 2010;141:717–27.

    PubMed  CAS  Google Scholar 

  93. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120:513–22.

    PubMed  CAS  Google Scholar 

  94. Denoyelle C, Abou-Rjaily G, Bezrookove V, Verhaegen M, Johnson TM, Fullen DR, et al. Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat Cell Biol. 2006;8:1053–63.

    PubMed  CAS  Google Scholar 

  95. Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8:729–40.

    PubMed  CAS  Google Scholar 

  96. Zeff RA, Freitag A, Grin CM, Grant-Kels JM. The immune response in halo nevi. J Am Acad Dermatol. 1997;37:620–4.

    PubMed  CAS  Google Scholar 

  97. Kolm I, Di Stefani A, Hofmann-Wellenhof R, Fink-Puches R, Wolf IH, Richtig E, et al. Dermoscopy patterns of halo nevi. Arch Dermatol. 2006;142:1627–32.

    PubMed  Google Scholar 

  98. Massi D, De Giorgi V, Carli P, Santucci M. Diagnostic significance of the blue hue in dermoscopy of melanocytic lesions: a dermoscopic-pathologic study. Am J Dermatopathol. 2001;23:463–9.

    PubMed  CAS  Google Scholar 

  99. Zalaudek I, Argenziano G, Ferrara G, Soyer HP, Corona R, Sera F, et al. Clinically equivocal melanocytic skin lesions with features of regression: a dermoscopic-pathological study. Br J Dermatol. 2004;150:64–71.

    PubMed  CAS  Google Scholar 

  100. Berman B, Shaieb AM, France DS, Altchek DD. Halo giant congenital melanocytic nevus: in vitro immunologic studies. J Am Acad Dermatol. 1988;19:954–60.

    PubMed  CAS  Google Scholar 

  101. Tokura Y, Yamanaka K, Wakita H, Kurokawa S, Horiguchi D, Usui A, et al. Halo congenital nevus undergoing spontaneous regression. Involvement of T-cell immunity in involution and presence of circulating anti-nevus cell IgM antibodies. Arch Dermatol. 1994;130:1036–41.

    PubMed  CAS  Google Scholar 

  102. Brownstein MH, Kazam BB, Hashimoto K. Halo congenital nevus. Arch Dermatol. 1977;113:1572–5.

    PubMed  CAS  Google Scholar 

  103. Berger RS, Voorhees JJ. Multiple congenital giant nevocellular nevi with halos. A clinical and electron microscopic study. Arch Dermatol. 1971;104:515–21.

    PubMed  CAS  Google Scholar 

  104. Kantor GR, Wheeland RG. Transepidermal elimination of nevus cells. A possible mechanism of nevus involution. Arch Dermatol. 1987;123:1371–4.

    PubMed  CAS  Google Scholar 

  105. Kageshita T, Inoue Y, Ono T. Spontaneous regression of congenital melanocytic nevi without evidence of the halo phenomenon. Dermatology. 2003;207:193–5.

    PubMed  Google Scholar 

Download references

Funding Source

None.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashfaq A. Marghoob M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer- Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burnett, M.E., Marghoob, A.A., Scope, A. (2012). Nevogenesis: Changing Theories. In: Marghoob, A. (eds) Nevogenesis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28397-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28397-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28396-3

  • Online ISBN: 978-3-642-28397-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics