Skip to main content

Geochronology of Metasomatic Events

  • Chapter
  • First Online:
Metasomatism and the Chemical Transformation of Rock

Part of the book series: Lecture Notes in Earth System Sciences ((LNESS))

Abstract

In order to date any geological event, suitable mineral geochronometers that record that and only that event must be identified and analyzed. In the case of metasomatism, recrystallisation is a key process that controls both the petrology and the isotopic record of minerals. It can occur both in the form of complete neocrystallisation (e.g. in a vein) and in the form of pseudomorphism, whereby dissolution/reprecipitation at the submicroscopic scale plays a central role. Recrystallisation may be complete or not, raising the possibility that relicts of a pre-metasomatic assemblage may be preserved. Because recrystallisation is energetically less costly at almost any temperature than diffusion, and because radiogenic isotopes (except 4He) never diffuse faster than major elements forming the mineral structure, there is a strong causal link between petrographic relicts and isotopic inheritance (as demonstrated for zircon, monazite, titanite, amphibole, K-feldspar, biotite, and muscovite). Metasomatic assemblages commonly contain such mixtures between relicts and newly formed phases, whose geochronology is slightly more complex than that of simple, ideal systems, but can be managed by techniques that have become routine in the last decade and which are described in this chapter. Because of its crucial role in controlling the isotope systematics, the petrogenesis of a mineral needs to be understood in extreme detail, especially using microchemical analyses and micro-imaging techniques, before mineral ages can be correctly interpreted. As the occurrence of recrystallization is limited by the availability of water, minerals act as “geohygrometers” that allow constraints to be placed on the nature and age of fluid circulation episodes, especially metasomatic events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allaz J, Berger A, Engi M, Villa IM (2011) The effects of retrograde reactions and of diffusion on 39Ar-40Ar ages of micas. J Petrol 52:691–716

    Article  Google Scholar 

  • Allen FM (1992) Mineral definition by HRTEM: problems and opportunities. Rev Mineral 27:289–333

    Google Scholar 

  • Arnold A, Jäger E (1965) Rb-Sr-Altersbestimmungen an Glimmern im Grenzbereich zwischen voralpinen Alterswerten und alpiner Verjüngung der Biotite. Eclogae Geol Helv 58:367–390

    Google Scholar 

  • Baldwin JA, Bowring SA, Williams ML, Mahan KH (2006) Geochronological constraints on the evolution of high-pressure felsic granulites from an integrated electron microprobe and ID-TIMS geochemical study. Lithos 88:173–200

    Article  Google Scholar 

  • Barth AP, Wooden JL (2010) Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas. Chem Geol 277:149–159

    Article  Google Scholar 

  • Bouvier A, Wadhwa M (2010) The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nature Geosci 3: 637–641

    Google Scholar 

  • Challandes N, Marquer D, Villa IM (2008) P-T-t modelling, fluid circulation, and 39Ar-40Ar and Rb-Sr mica ages in the Aar Massif shear zones (Swiss Alps). Swiss J Geosci 101:269–288

    Article  Google Scholar 

  • Cherniak DJ (2010) Diffusion in accessory minerals: zircon, titanite, apatite, monazite and xenotime. Rev Mineral Geochem 72:827–869

    Article  Google Scholar 

  • Christensen JN, Halliday AN, Lee DC, Hall CM (1995) In situ Sr isotopic analysis by laser ablation. Earth Planet Sci Lett 136:79–85

    Article  Google Scholar 

  • Cocherie A, Be Mezeme E, Legendre O, Fanning CM, Faure M, Rossi P (2005) Electron microprobe dating as a tool for determining the closure of Th-U-Pb systems in migmatitic monazites. Am Mineral 90:607–618

    Article  Google Scholar 

  • Cole DR, Ohmoto H, Lasaga AC (1983) Isotopic exchange in mineral-fluid systems. I. Theoretical evaluation of oxygen isotopic exchange accompanying surface reactions and diffusion. Geochim Cosmochim Acta 47:1681–1693

    Article  Google Scholar 

  • Compston W, Williams IS, Meyer CE (1984) U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Proc Lunar Planet Sci Conf 14:525–534

    Google Scholar 

  • Corfu F (1996) Multistage zircon and titanite growth and inheritance in an Archean gneiss complex, Winnipeg River Subprovince, Ontario. Earth Planet Sci Lett 141:175–186

    Article  Google Scholar 

  • Corfu F, Muir TL (1989) The Hemlo Heron Bay greenstone belt and Hemlo Au Mo deposit, Superior Province: II. Timing of metamorphism, alteration and Au mineralization from titanite, rutile, and monazite U Pb geochronology. Chem Geol 79:201–223

    Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53:468–500

    Article  Google Scholar 

  • Crowley JL, Ghent ED (1999) Electron microprobe study of the U-Th-Pb systematics of metamorphosed monazite: the role of Pb diffusion versus overgrowth and recrystallization. Chem Geol 157:285–302

    Article  Google Scholar 

  • Dahl PS (1997) A crystal-chemical basis for Pb retention and fission-track annealing systematics in U-bearing minerals, with implications for geochronology. Earth Planet Sci Lett 150:277–290

    Article  Google Scholar 

  • Davis DW, Schandl ES, Wasteneys HA (1994) U-Pb dating of minerals in alteration halos of Superior Province massive sulfide deposits - syngenesis versus metamorphism. Contrib Mineral Petrol 115:427–437

    Article  Google Scholar 

  • De Sigoyer J, Chavagnac V, Blichert-Toft J, Villa IM, Guillot S, Luais B, Cosca M, Mascle G (2000) Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: multichronology of the Tso Morari eclogites. Geology 28:487–490

    Article  Google Scholar 

  • DeWolf CP, Zeissler CJ, Halliday AN, Mezger K, Essene EJ (1996) The role of inclusions in U-Pb and Sm-Nd garnet geochronology: stepwise dissolution experiments and trace uranium mapping by fission track analysis. Geochim Cosmochim Acta 60:121–134

    Article  Google Scholar 

  • Di Vincenzo G, Palmeri R (2001) An 40Ar-39Ar investigation of high-pressure metamorphism and the retrogressive history of mafic eclogites from the Lanterman Range (Antarctica): evidence against a simple temperature control on argon transport in amphibole. Contrib Mineral Petrol 141:15–35

    Article  Google Scholar 

  • Di Vincenzo G, Ghiribelli B, Giorgetti G, Palmeri R (2001) Evidence of a close link between petrology and isotope records: constraints from SEM, EMP, TEM and in situ 40Ar-39Ar laser analyses on multiple generations of white micas (Lanterman Range, Antarctica). Earth Planet Sci Lett 192:389–405

    Article  Google Scholar 

  • Di Vincenzo G, Viti C, Rocchi R (2003) The effect of chlorite interlayering on 40Ar-39Ar biotite dating: an 40Ar-39Ar laserprobe and TEM investigation of variably chloritised biotites. Contrib Mineral Petrol 145:643–648

    Article  Google Scholar 

  • Di Vincenzo G, Carosi R, Palmeri R (2004) The relationship between tectono-metamorphic evolution and argon isotope records in white mica: constraints from in situ 40Ar-39Ar laser analysis of the Variscan basement of Sardinia. J Petrol 45:1013–1043

    Article  Google Scholar 

  • Engvik AK, Mezger K, Wortelkamp S, Bast R, Corfu F, Korneliussen A, Ihlen P, Bingen B, Austrheim H (2011) Metasomatism of gabbro - mineral replacement and element mobilization during the Sveconorwegian metamorphic event. J Metamorph Geol 29:399–423

    Article  Google Scholar 

  • Faure G (1986) Principles of isotope geology, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Ferrara G, Petrini R, Serri G, Tonarini S (1989) Petrology and isotope geochemistry of San Vincenzo rhyolites (Tuscany, Italy). Bull Volcanol 51:379–388

    Article  Google Scholar 

  • Foland KA (1983) 40Ar/39Ar incremental heating plateaus for biotites with excess Ar. Chem Geol 41:3–21

    Article  Google Scholar 

  • Frei R, Villa IM, Kramers JD, Nägler TF, Przybylowicz WJ, Prozesky VM, Hofmann B, Kamber BS (1997) Single mineral dating by the Pb-Pb step-leaching method: assessing the mechanisms. Geochim Cosmochim Acta 61:393–414

    Article  Google Scholar 

  • Gardés E, Jaoul O, Montel J-M, Seydoux-Guillaume A-M, Wirth R (2006) Geochim Cosmochim Acta 70:2325–2336

    Article  Google Scholar 

  • Gebauer D, Av Q, Compston W, Williams IS, Grünenfelder M (1988) Archean zircons in a retrograded Caledonian eclogite of the Gotthard massif (Central Alps, Switzerland). Schweiz Mineral Petrog Mitt 68:485–490

    Google Scholar 

  • Geisler T, Pidgeon RT, Kurtz R, van Bronswijk W, Schleicher H (2003) Experimental hydrothermal alteration of partially metamict zircon. Am Mineral 88:1496–1513

    Google Scholar 

  • Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50

    Article  Google Scholar 

  • Girard J-P, Onstott TC (1991) Application of 40Ar/39Ar laser-probe and step-heating techniques to the dating of diagenetic K-feldspar overgrowths. Geochim Cosmochim Acta 55:3777–3793

    Article  Google Scholar 

  • Glodny J, Kuhn A, Austrheim H (2008) Diffusion versus recrystallization processes in Rb-Sr geochronology: isotopic relics in eclogite facies rocks, western Gneiss region, Norway. Geochim Cosmochim Acta 72:506–525

    Article  Google Scholar 

  • Goncalves P, Williams ML, Jercinovic MJ (2005) Electron microprobe age mapping. Am Mineral 90:578–585

    Article  Google Scholar 

  • Hames WE, Cheney JT (1997) On the loss of 40Ar* from muscovite during polymetamorphism. Geochim Cosmochim Acta 61:3863–3872

    Article  Google Scholar 

  • Hammerschmidt K, Frank E (1991) Relics of high pressure metamorphism in the Lepontine Alps (Switzerland) - 40Ar-39Ar and microprobe analyses on white micas. Schweiz Mineral Petrogr Mitt 71:261–274

    Google Scholar 

  • Hansen EC, Harlov DE (2007) Whole-rock, phosphate, and silicate compositional trends across an amphibolite- to granulite-facies transition, Tamil Nadu, India. J Petrol 48:1641–1680

    Article  Google Scholar 

  • Harlov DE, Dunkley DJ (2010) Experimental high-grade alteration of zircon using akali- and Ca-bearing solutions: resetting the zircon geochronometer during metasomatism V41D-2301 presented at 2010 Fall Meeting, AGU, San Francisco, 13–17 Dec 2010

    Google Scholar 

  • Harlov DE, Förster H-J (2003) Fluid-induced nucleation of REE-phosphate minerals in apatite: nature and experiment. Part II. Fluorapatite. Am Mineral 88:1209–1229

    Google Scholar 

  • Harlov DE, Hetherington CJ (2010) Partial high-grade alteration of monazite using alkali-bearing fluids: experiment and nature. Am Mineral 95:1105–1108

    Article  Google Scholar 

  • Harlov DE, Förster H-J, Nijland TG (2002) Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: nature and experiment. Part I. Chlorapatite. Am Mineral 87:245–261

    Google Scholar 

  • Harlov DE, Wirth R, Förster H-J (2005) An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petrol 150:268–286

    Article  Google Scholar 

  • Harlov DE, Wirth R, Hetherington CJ (2011) Fluid-mediated partial alteration in monazite: the role of coupled dissolution–reprecipitation in element redistribution and mass transfer. Contrib Mineral Petrol 162:329–348

    Article  Google Scholar 

  • Hawkins DP, Bowring SA (1997) U-Pb systematics of monazite and xenotime: case studies from the Paleoproterozoic of the Grand Canyon, Arizona. Contrib Mineral Petrol 127:87–103

    Article  Google Scholar 

  • Hawkins DP, Bowring SA (1999) U-Pb monazite, xenotime and titanite geochronological constraints on the prograde to post-peak metamorphic thermal history of Paleoproterozoic migmatites from the Grand Canyon, Arizona. Contrib Mineral Petrol 134:150–169

    Article  Google Scholar 

  • Hetherington CJ, Harlov DE (2008) Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: mechanics and fluid chemistry. Am Mineral 93:806–820

    Article  Google Scholar 

  • Hetherington CJ, Jercinovic MJ, Williams ML, Mahan KH (2008) Understanding geologic processes with xenotime: composition, chronology, and a protocol for electron probe microanalysis. Chem Geol 254:133–147

    Article  Google Scholar 

  • Hetherington CJ, Harlov DE, Budzyń B (2010) Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition. Mineral Petrol 99: 165–184

    Google Scholar 

  • Hodges KV, Hames WE, Bowring SA (1994) 40Ar/39Ar age gradients in micas from a high-temperature-low-pressure metamorphic terrain; evidence for very slow cooling and implications for the interpretation of age spectra. Geology 22:55–58

    Article  Google Scholar 

  • Jercinovic MJ, Williams ML, Lane ED (2008) In-situ trace element analysis of monazite and other fine-grained accessory minerals by EPMA. Chem Geol 254:197–215

    Article  Google Scholar 

  • Kamber BS, Blenkinsop TG, Villa IM, Dahl PS (1995) Proterozoic transpressive deformation in the Northern Marginal Zone, Limpopo Belt, Zimbabwe. J Geol 103:493–508

    Article  Google Scholar 

  • Kastner M, Siever R (1979) Low temperature feldspars in sedimentary rocks. Am J Sci 279:435–479

    Article  Google Scholar 

  • Kelly N, Appleby S, Mahan K (2010) Mineralogical and textural characterization of metamorphic rocks using an automated mineralogy approach. In: Programs with abstracts, annual meeting of the geological society of America, Denver

    Google Scholar 

  • Krogh TE, Davis GL (1974) Alteration in zircons with discordant U-Pb ages. Carnegie Inst WashYearb 73:560–567

    Google Scholar 

  • Krogh TE, Davis GL (1975) Alteration in zircons and differential dissolution of altered and metamict zircon. Carnegie Inst WashYearb 74:619–623

    Google Scholar 

  • Labotka TC, Cole DR, Fayek M, Riciputi LR, Stadermann FJ (2004) Coupled cation and oxygen-isotope exchange between alkali feldspar and aqueous chloride solution. Am Mineral 89:1822–1825

    Google Scholar 

  • Lasaga AC (1983) Geospeedometry: an extension of geothermometry. In: Saxena SK (ed) Kinetics and equilibrium in mineral reactions. Springer, New York

    Google Scholar 

  • Lasaga AC (1986) Metamorphic reaction rate laws and development of isograds. Mineral Mag 50:359–373

    Article  Google Scholar 

  • Mahan KH, Goncalves P, Williams ML, Jercinovic MJ (2006) Dating metamorphic reactions and fluid flow: application to exhumation of high-P granulites in a crustal-scale shear zone, western Canadian Shield. J Metamorph Geol 24:193–217

    Article  Google Scholar 

  • Maineri C, Benvenuti M, Costagliola P, Dini A, Lattanzi PF, Ruggieri G, Villa IM (2003) Sericitic alteration at the La Crocetta deposit (Elba Island, Italy): interplay between magmatism, tectonics and hydrothermal activity. Miner Deposita 38:67–86

    Article  Google Scholar 

  • Malusà MG, Villa IM, Vezzoli G, Garzanti E (2011) Detrital geochronology of unroofing magmatic complexes and the slow erosion of Oligocene volcanoes in the Alps. Earth Planet Sci Lett 301:324–336

    Google Scholar 

  • Mayer A, Cortiana G, Dal Piaz GV, Deloule E, De Pieri R, Jobstraibizer PG (2003) U-Pb single zircon ages of the Adamello batholith (Southern Alps). Mem Sci Geol 55:151–167

    Google Scholar 

  • McIntyre GA, Brooks C, Compston W, Turek A (1966) The statistical assessment of Rb-Sr isochrons. J Geophys Res 71:5459–5468

    Article  Google Scholar 

  • Medenbach O (1976) Geochemie der Elemente in Zirkon und ihre räumliche Verteilung – eine Untersuchung mit der Elektronenstrahlmikrosonde. Unpublished Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg

    Google Scholar 

  • Megrue GH (1973) Spatial distribution of 40Ar/39Ar ages in lunar breccia 14301. J Geophys Res 78:3216–3221

    Article  Google Scholar 

  • Merrihue CM (1965) Trace-element determinations and potassium-argon dating by mass spectroscopy of neutron-irradiated samples. Trans Am Geophys Union 46:125

    Google Scholar 

  • Merrihue CM, Turner G (1966) Potassium-argon dating by activation with fast neutrons. J Geophys Res 71:2852–2857

    Article  Google Scholar 

  • Mezger K, Krogstad EJ (1997) Interpretation of discordant zircon ages: an evaluation. J Metamorph Geol 15:127–140

    Article  Google Scholar 

  • Müller W, Aerden D, Halliday AN (2000) Isotopic dating of strain fringe increments: duration and rates of deformation in shear zones. Science 288:2195–2918

    Article  Google Scholar 

  • Müller W, Kelley SP, Villa IM (2002) Dating fault-generated pseudotachylytes: Comparison of 40Ar/39Ar stepwise-heating, laser-ablation and Rb/Sr microsampling analyses. Contrib Mineral Petrol 144:57–77

    Google Scholar 

  • Neymark LA, Amelin YV, Paces JB (2000) 206Pb–230Th–234U–238U and 207Pb–235U geochronology of Quaternary opal, Yucca Mountain, Nevada. Geochim Cosmochim Acta 64:2913–2928

    Article  Google Scholar 

  • Nyfeler D, Armbruster T, Villa IM (1998) Si, Al, Fe order-disorder in Fe-bearing K-feldspar from Madagascar and its implication to Ar diffusion. Schweiz Mineral Petrog Mitt 78:11–21

    Google Scholar 

  • Oberli F, Ntaflos Th, Meier M, Kurat G (1987) Emplacement age of the peridotites from Zabargad Island (Red Sea): a zircon U-Pb isotope study. Terra Cognita 7:334

    Google Scholar 

  • Onstott TC, Phillips D, Pringle-Goodell L (1990) Laser microprobe measurement of chlorine and argon zonation in biotite. Chem Geol 90:145–168

    Google Scholar 

  • Onstott TC, Miller ML, Ewing RC, Arnold GW, Walsh DS (1995) Recoil refinements: implications for the 40Ar/39Ar dating technique. Geochim Cosmochim Acta 59:1821–1834

    Article  Google Scholar 

  • Petrik I, Konecny P (2009) Metasomatic replacement of inherited metamorphic monazite in a biotite-garnet granite from the Nizke Tatry Mountains, Western Carpathians, Slovakia: chemical dating and evidence for disquilibrium melting. Am Mineral 94:957–974

    Article  Google Scholar 

  • Pettke Th, Audetat A, Schaltegger U, Heinrich CA (2005) Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia) - Part II: evolving zircon and thorite trace element chemistry. Chem Geol 22:191–213

    Article  Google Scholar 

  • Phillips D, Onstott TC (1988) Argon isotopic zoning in mantle phlogopite. Geology 16:542–546

    Article  Google Scholar 

  • Podosek FA, Huneke JC (1973) Argon in Apollo 15 green glass spherules (15426): 40Ar-39Ar age and trapped argon. Earth Planet Sci Lett 19:413–421

    Article  Google Scholar 

  • Provost A (1990) An improved diagram for isochron data. Chem Geol 80:85–99

    Google Scholar 

  • Proyer A (2003) The preservation of high-pressure rocks during exhumation: metagranites and metapelites. Lithos 70:183–194

    Article  Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708

    Article  Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. Rev Mineral Geochem 70:87–124

    Article  Google Scholar 

  • Putnis A, Austrheim H (2010) Fluid-induced processes: metasomatism and metamorphism. Geofluids 10:254–269

    Google Scholar 

  • Rasmussen B (1996) Early-diagenetic REE-phosphate minerals (florencite, gorceixite, crandallite, and xenotime) in marine sandstones: a major sink for oceanic phosphorus. Am J Sci 296:601–632

    Article  Google Scholar 

  • Rasmussen B (2005) Radiometric dating of sedimentary rocks: the application of diagenetic xenotime geochronology. Earth Sci Rev 68:197–243

    Article  Google Scholar 

  • Rasmussen B, Fletcher IR, Bengtson S, McNaughton NJ (2004) SHRIMP U-Pbdating of diagenetic xenotime in the Stirling Range formation, Western Australia: 1.8 billion year minimum age for the Stirling biota. Precamb Res 133:329–337

    Article  Google Scholar 

  • Rayner N, Stern RA, Carr D (2005) Grain-scale variations in trace element composition of fluid-altered zircon, Acasta Gneiss complex, northwestern Canada. Contrib Mineral Petrol 148:721–734

    Article  Google Scholar 

  • Rutherford E (1906) The mass and velocity of the α particles expelled from radium and actinium. Phil Mag Ser 6 12(70):348

    Article  Google Scholar 

  • Schaltegger U (2007) Hydrothermal zircon. Elements 3:51

    Article  Google Scholar 

  • Schneider J, Bosch D, Monié P, Bruguier O (2007) Micro-scale element migration during eclogitisation in the Bergen arcs (Norway): a case study on the role of fluids and deformation. Lithos 96:325–352

    Article  Google Scholar 

  • Schobert K (2005) Metasomatische Gesteine im Tal des Rio Pisco (Peru). Unpublished M.Sc. thesis, Universität Bern

    Google Scholar 

  • Seydoux-Guillaume A-M, Goncalves P, Wirth R, Deutsch A (2003) Transmission electron microscope study of polyphase and discordant monazites; site-specific specimen preparation using the focused ion beam technique. Geology 31:973–976

    Article  Google Scholar 

  • Sletten VW, Onstott TC (1999) The effect of the instability of muscovite during in vacuo heating on 40Ar/39Ar step-heating spectra. Geochim Cosmochim Acta 62:123–141

    Article  Google Scholar 

  • Smith JV (1974) Feldspar minerals. Springer, Heidelberg

    Book  Google Scholar 

  • Spötl C, Kralik M, Kunk MJ (1996) Authigenic feldspar as an indicator of paleo-rock water interactions in Permian carbonates of the northern Calcareous Alps, Austria. J Sediment Res 66:139–146

    Google Scholar 

  • Steiger RH, Wasserburg GJ (1969) Comparative U-Th-Pb systematics in 2.7 × 109 yr plutons of different geologic histories. Geochim Cosmochim Acta 33:1213–1232

    Article  Google Scholar 

  • Stosch HG, Lugmair GW (1990) Geochemistry and evolution of MORB-type eclogites from the Munchberg Massif, southern Germany. Earth Planet Sci Lett 99:230–249

    Article  Google Scholar 

  • Thöni M, Jagoutz E (1992) Some new aspects of dating eclogites in orogenic belts: Sm-Nd, Rb-Sr, and Pb-Pb isotopic results from the Austroalpine Saualpe and Koralpe type-locality (Carinthia/Styria, southeastern Austria). Geochim Cosmochim Acta 56:347–368

    Article  Google Scholar 

  • Tomaschek F (2004) Zircon reequilibration by dissolution-represipitation: reaction textures from flux-grown solid solutions. Beihefte zum Eur J Mineral 12:214

    Google Scholar 

  • Tomaschek F, Kennedy AK, Villa IM, Lagos M, Ballhaus C (2003) Zircons from Syros, Cyclades, Greece - recrystallization and mobilization of zircon during high-pressure metamorphism. J Petrol 44:1977–2002

    Article  Google Scholar 

  • Turner G, Huneke JC, Podosek FA, Wasserburg GJ (1971) 40Ar-39Ar ages and cosmic ray exposure age of Apollo 14 samples. Earth Planet Sci Lett 12:19–35

    Article  Google Scholar 

  • Vance D, O’Nions RK (1990) Isotopic chronometry of zoned garnets: growth kinetics and metamorphic histories. Earth Planet Sci Lett 97:227–240

    Article  Google Scholar 

  • Vance D, Müller W, Villa IM (2003) Geochronology: linking the isotopic record with petrology and textures - an introduction. Geol Soc London Spec Pub 220:1–24

    Google Scholar 

  • Veblen DR (1992) Electron microscopy applied to nonstoichiometry, polysomatism, and replacement reactions in minerals. Rev Mineral 27:181–229

    Google Scholar 

  • Villa IM (1998) Isotopic closure. Terra Nova 10:42–47

    Article  Google Scholar 

  • Villa IM (2002) Mete isotopes without petrography?/'Tis but a jest, as sound chronology/Must needs base on complementarity. Keynote address, Internat Mineral Association congress, Edinburgh

    Google Scholar 

  • Villa IM (2006) From the nm to the Mm: isotopes, atomic-scale processes, and continent-scale tectonic models. Lithos 87:155–173

    Article  Google Scholar 

  • Villa IM (2010) Disequilibrium textures vs equilibrium modelling: geochronology at the crossroads. Geol Soc London Spec Publ 332:1–15

    Article  Google Scholar 

  • Villa IM, Grobéty B, Kelley SP, Trigila R, Wieler R (1996) Assessing Ar transport paths and mechanisms for McClure Mountains Hornblende. Contrib Mineral Petrol 126:67–80

    Google Scholar 

  • Villa IM, Hermann J, Müntener O, Trommsdorff V (2000) 39Ar-40Ar dating of multiply zoned amphibole generations (Malenco, Italian Alps). Contrib Mineral Petrol 140:363–381

    Article  Google Scholar 

  • Villa IM, Ruggieri G, Puxeddu M (2001) Geochronology of magmatic and hydrothermal micas from the Larderello geothermal field. In: Cidu R (ed) Water-rock interaction. Balkema, Lisse

    Google Scholar 

  • Villa IM, Ruggieri G, Puxeddu M, Bertini G (2006) Geochronology and isotope transport systematics in a subsurface granite from the Larderello-Travale geothermal system (Italy). J Volcanol Geoth Res 152:20–50

    Article  Google Scholar 

  • Williams ML, Jercinovic MJ, Hetherington CJ (2007) Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annu Rev Earth Planet Sci 35:137–175

    Article  Google Scholar 

  • Williams ML, Jercinovic MJ (2002) Microprobe monazite geochronology: putting absolute time into microstructural analysis. J Struct Geol 24:1013–1028

    Article  Google Scholar 

  • Williams ML, Jercinovic MJ, Terry MP (1999) Age mapping and dating of monazite on the electron microprobe: deconvoluting multistage tectonic histories. Geology 27:1023–1026

    Article  Google Scholar 

  • Williams ML., Jercinovic MJ, Goncalves P, Mahan KH (2006) Format and philosophy for collecting, compiling, and reporting microprobe monazite ages. Chem Geol 225:1–15

    Google Scholar 

  • Williams ML, Jercinovic MJ, Harlov DE, Budzyń B, Hetherington CJ (2011) Resetting monazite ages during fluid-related alteration. Chem Geol 283:218–225

    Article  Google Scholar 

  • Zhou B, Hensen BJ (1995) Inherited Sm/Nd isotope components preserved in monazite inclusions within garnets in leucogneiss from East Antarctica and implications for closure temperature studies. Chem Geol 121:317–326

    Article  Google Scholar 

Download references

Acknowledgements

Reviews by Fernando Corfu, Pete Dahl, Gianfranco Di Vincenzo, and Klaus Mezger improved earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor M. Villa .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Villa, I.M., Williams, M.L. (2013). Geochronology of Metasomatic Events. In: Metasomatism and the Chemical Transformation of Rock. Lecture Notes in Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28394-9_6

Download citation

Publish with us

Policies and ethics